您好,欢迎来到刀刀网。
搜索
您的当前位置:首页设x、y是有理数,且x、y满足x^2+2y+(√2)*y=17-4√2,求x+y的值

设x、y是有理数,且x、y满足x^2+2y+(√2)*y=17-4√2,求x+y的值

来源:刀刀网


x^2+2y+(√2)*y=17-4√2
x^2+2y-17=(-y-4)√2
x、y是
有理数
所以x^2+2y-17是有理数
所以(-y-4)√2是有理数
√2是
无理数
,所以只有-y-4=0才能成立
所以此时x^2+2y-17也等于0
-y-4=0,y=-4
x^2+2y-17=0
x^2=17-2y=25
所以x=±5,y=-4
所以x+y=5-4=1或x+y=-5-4=-9

Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务