TOWARDSTHETHEORYOFSTATIONARYUNIVERSE1
ArthurMezhlumian2
DepartmentofPhysics,StanfordUniversity,
Stanford,CA94305-4060
ABSTRACT
ThistalkpresentssomeprogressachievedincollaborationwithA.LindeandD.Linde1,2towardsunderstandingthetruenatureoftheglobalspatialstructureoftheUniverseaswellasthemostgeneralstationarycharacteristicsofitstime-dependentstatewitheternallygrowingtotalvolume.
Inouropinion,thesimplestand,simultaneously,themostgeneralversionofinflationarycosmologyisthechaoticinflationscenario3.Itcanberealizedinallmodelsweretheotherversions4,5ofinflationarytheorycanberealized.Severalyearsagoitwasrealizedthatinflationinthesetheorieshasaveryinterestingproperty6,7whichwillbediscussedinthistalk.IftheUniversecontainsatleastoneinflationarydomainofasizeofhorizon(h-region)withasufficientlylargeandhomogeneousscalarfieldφ,thenthisdomainwillpermanentlyproducenewh-regionsofasimilartype.DuringthisprocessthetotalphysicalvolumeoftheinflationaryUniverse(whichisproportionaltothetotalnumberofh-regions)willgrowindefinitely.
Fortunately,somekindofstationaritymayexistinmanymodelsofinflationaryUniverseduetotheprocessoftheUniverseself-reproduction8.Thepropertiesofinflationarydomains
formedduringtheprocessoftheself-reproductionoftheUniversedonotdependonthemomentoftimeatwhicheachsuchdomainisformed;theydependonlyonthevalueofthescalarfieldsinsideeachdomain,ontheaveragedensityofmatterinthisdomainandonthephysicallengthscale.Thiskindofstationarity,asopposedtothe“stationarydistribution”Pc(φ,t)(theprobabilitydensitytofindthefieldφinsideagivenHubbledomainattimet)cannotbedescribedintheminisuperspaceapproach.
InordertodescribethestructureoftheinflationaryUniversebeyondoneh-region(min-isuperspace)approachonehastoinvestigatetheprobabilitydistributionPp(φ,t),whichtakesintoaccounttheinhomogeneousexponentialgrowthofthevolumeofdomainsfilledbyfieldφ6.Solutionsforthisprobabilitydistributionwerefirstobtainedin6,7forthecaseofchaoticinflation.Itwasshownthatiftheinitialvalueofthescalarfieldφisgreaterthansomecriticalvalueφ∗,thentheprobabilitydistributionPp(φ,t)permanentlymovestolargerandlargerfieldsφ,untilitreachesthefieldφp,atwhichtheeffectivepotentialofthefield
becomesoftheorderofPlanckdensityMp4
(wewillassumeMp=1hereafter),wherethestandardmethodsofquantumfieldtheoryinacurvedclassicalspacearenolongervalid.Bythemethodsusedin6,7itwasimpossibletocheckwhetherPp(φ,t)asymptoticallyapproachesanystationaryregimeintheclassicaldomainφ<φp.
SeveralimportantstepstowardsthesolutionofthisproblemweremadebyAryalandVilenkin9,NambuandSasaki10andMiji´c11.Theirpaperscontainmanybeautifulresultsandinsights,andwewillusemanyresultsobtainedbytheseauthors.However,thegeneralizationoftheresultsof9tonon-trivialcaseofchaoticinflationappearedtobenotaneasyproblem1,2.Miji´c11didnothaveapurposetoobtainacompleteexpressionforthestationarydistributionPp(φ,t).ThecorrespondingexpressionswereobtainedforvarioustypesofpotentialsV(φ)in10.Unfortunately,accordingto10,thestationarydistributionPp(φ,t)isalmostentirelyconcentratedatφ≫φp,i.e.atV(φ)≫1,wherethemethodsusedin10areinapplicable.Inthistalkwewillarguethattheprocessoftheself-reproductionofinflationaryUniverseeffectivelykillsitselfatdensitiesapproachingthePlanckdensity.ThisleadstotheexistenceofastationaryprobabilitydistributionPp(φ,t)concentratedentirelyatsub-Planckianden-sitiesV(φ)<1inawideclassoftheoriesleadingtochaoticinflation.
Letusconsiderthesimplestmodelofchaoticinflationbasedonthetheoryofascalarfieldφminimallycoupledtogravity,withtheLagrangian
L=
1
2
∂µφ∂µφ−V(φ).
(1)
HereG=M−2
p=1isthegravitationalconstant,Risthecurvaturescalar,V(φ)istheeffectivepotentialofthescalarfield.IftheclassicalfieldφissufficientlyhomogeneousinsomedomainoftheUniverse(seebelow),thenitsbehaviorinsidethisdomainisgovernedbytheequations
φ¨+3Hφ˙=−dV/dφ,(2)
H2
+
k
3
1
HereH=a/a,˙a(t)isthescalefactoroftheUniverse,k=+1,−1,or0foraclosed,openorflatUniverse,respectively.
ThemostimportantfactforinflationaryscenarioisthatformostpotentialsV(φ)(e.g.,inallpower-lawV(φ)=gnφn/nandexponentialV(φ)=geαφpotentials)thereisanin-termediateasymptoticregimeofslowrollingofthefieldφandquasi-exponentialexpansionoftheUniverse.Thisexpansion(inflation)endsatφ∼φewheretheslow-rollingregime¨≪3H(φ)φ˙breakesdown.φ
If,asitisusuallyassumed,theclassicaldescriptionoftheUniversebecomespossibleonlywhentheenergy-momentumtensorofmatterbecomessmallerthan1,thenatthismoment
<1andV(φ)∼<1.Therefore,theonlyconstraintontheinitialamplitudeofthe∂µφ∂µφ∼
<1.Thisgivesatypicalinitialvalueofthefieldφinthetheory(1):fieldφisgivenbyV(φ)∼
φ0∼φp,
whereφpcorrespondstothePlanckenergydensity,V(φp)=1.
Duringtheinflationalltheinhomogeneitiesarestretchedawayand,iftheevolutionof
theUniverseweregovernedsolelybyclassicalequationsofmotion(2),(3),wewouldendupwithextremelysmoothgeometryofthespatialsectionoftheUniversewithnoprimordialfluctuationstoinitiatethegrowthofgalaxiesandlarge-scalestructure.Fortunately,thesameJeansinstabilitywhichcausesthegrowthofgalaxiesduringtheHotBigBangeraleadstotheexistenceofthegrowingmodesofvacuumfluctuationsduringtheinflation.ThewavelengthsofallvacuumfluctuationsofthescalarfieldφgrowexponentiallyintheexpandingUniverse.WhenthewavelengthofanyparticularfluctuationbecomesgreaterthanH−1,thisfluctuationstopsoscillating,anditsamplitudefreezesatsomenonzerovalue
˙intheequationofmotionofthefieldφ.Theδφ(x)becauseofthelargefrictionterm3Hφ
amplitudeofthisfluctuationthenremainsalmostunchangedforaverylongtime,whereasitswavelengthgrowsexponentially.Therefore,theappearanceofsuchafrozenfluctuationisequivalenttotheappearanceofaclassicalfieldδφ(x)thatdoesnotvanishafteraveragingovermacroscopicintervalsofspaceandtime.
Becausethevacuumcontainsfluctuationsofallwavelengths,inflationleadstothecre-ationofmoreandmoreperturbationsoftheclassicalfieldwithwavelengthsgreaterthanH−1.TheaverageamplitudeofsuchperturbationsgeneratedduringatimeintervalH−1(inwhichtheUniverseexpandsbyafactorofe)isgivenby
|δφ(x)|≈
H
(4)
ofmotionofthelong-wavelengthfield12,13,14:
d
+H3/2(φ)
3H(φ)
∂
∂t
=
∂
8π2
3H(φ)
Pc
,Theformalstationarysolution(∂Pc/∂t=0)ofequation(7)wouldbe12
Pc∼exp
3
∂
∂
∂t
=
8π2
3H(φ)
Pp
+3H(φ)Pp
4
(7)
(9)
Themathematicalmodeldescribingsuchbehavioristherecentlydevelopedtheoryofanewtypeofbranchingdiffusionprocesses18.Eq.(9)is,fromthisperspective,thefor-wardKolmogorovequationforthefirstmomentofthegeneratingfunctionalofnumberofbranchingparticles.
Therearetwomainsetsofquestionswhichmaybeaskedconcerningsuchprocesses.Firstofall,onemaybeinterestedintheprobabilityPp(φ,t)tofindagivenfieldφatagiventimetundertheconditionthatinitialvalueofthefieldwasequaltosomeφ(t=0)=φ0.Inwhatfollowswewilldenoteφ0asχ.Ontheotherhand,onemaywishtoknow,whatistheprobabilityPp(χ,t)thatthegivenfinalvalueofthefieldφ(orthestatewithagivenfinaldensityρ)appearedasaprocessofdiffusionandbranchingofadomaincontainingsomefieldχ.Or,moregenerally,whatarethetypicalhistoryofbranchingBrowniantrajectorieswhichendupatahypersurfaceofagivenφ(oragivenρ)?
IthappensthatifwedonottakethePlanckboundaryseriously,thisequationalsodoesn’thaveatruestationarysolution(thesolutionsfoundbyNambuet.al.10areheavilyconcentratedatthesuper-Planckiandensitieswhichisjustanotherwaytostatethatthereisnorealstationarity).Thisconclusion,however,mayfailifwewilltreatthePlanckboundarymorecarefully.Therearedifferentreasonstodothis:
1.Eq.(9)mayhaveaslightlydifferentform,whichcorrespondstothedifferencebetweenstochasticapproachesofItoandStratonovich.Thisdifferenceisnotimportantatdensities
>1itmaybecomesignificant.(Note,however,thatthismuchsmallerthan1,butatV(φ)∼
isnotanunsolvableproblem.Onemayjustinvestigatemodifiedequationsaswell.Twootherproblemsaremorefundamental.)
2.Diffusionequationswerederivedinthesemiclassicalapproximationwhichbreaks
4
downnearthePlanckenergydensityρp∼Mp=1.3.Interpretationoftheprocessesdescribedbytheseequationsisbasedonthenotionofclassicalfieldsinaclassicalspace-time,whichisnotapplicableatdensitieslargerthan1becauseoflargefluctuationsofmetricatsuchdensities.Inparticular,ourinterpretationofPcandPpasofprobabilitiestofindclassicalfieldφinagivenpointatagiventimedoesnotmakemuchsenseatρ>1.
Thereisalsoanother,moregeneral,reasontoexpecttheexistenceofthestationarysolutions:aswewillarguenow,inflationkillsitselfasthedensityapproachesthePlanck
4
densityρp∼Mp.InourpreviousinvestigationweassumedthatthevacuumenergydensityisgivenbyV(φ)andtheenergy-momentumtensorisgivenbyV(φ)gµν.However,quantumfluctuationsofthescalarfieldgivethecontributiontotheaveragevalueoftheenergymomentumtensor,whichdoesnotdependonmass(form2≪H2)andisgivenby15
3H4 3V2gµν. (10) Theoriginofthiscontributionisobvious.Quantumfluctuationsofthescalarfieldφfreeze 5 outwiththeamplitude H (definedbytheequationsbelow): Pp(φp,t|χ)= ∞ eλstψs(χ)πs(φ). (12) s=1 Indeed,thisgivesusasolutionofeq.(9)if 1 2π∂2 2π ∂ 2π ∂ 2π πj(φ) ∂ 3H(χ)+∂ ∂ 3H(φ) πj(φ)+3H(φ)πj(φ)=λjπj(φ).(14) Theorthonormalityconditionreads φpφe ψs(χ)πj(χ)dχ=δsj(15) Inourcase(withregularboundaryconditions)onecaneasilyshowthatthespectrumof λjisdiscreteandboundedfromabove.ThereforetheasymptoticsolutionforPp(φ,t|χ)(inthelimitt→∞)isgivenby Pp(φp,t|χ)=e λ1t ψ1(χ)π1(φ)·1+Oe Hereψ1(χ)istheonlypositiveeigenfunctionofeq.(13),λ1isthecorresponding(real)eigenvalue,andπ1(φ)(invariantdensityofbranchingdiffusion)istheeigenfunctionoftheconjugateoperator(14)withthesameeigenvalueλ1.Note,thatλ1isthelargesteigenvalue,Re(λ1−λ2)>0.Wefound2thatinrealistictheoriesofinflationthetypicaltimeofrelax-ationtotheasymptoticregime,trel∼(λ1−λ2)−1,isextremelysmall.ItisonlyaboutafewthousandsPlancktimes,i.e.about10−40sec.Thismeans,thatthenormalizeddistribution ˜p(φ,t|χ)=e−λ1tPp(φp,t|χ)P rapidlyconvergestothetime-independentnormalizeddistribution ˜p(φ|χ)≡P˜p(φ,t→∞|χ)=ψ1(χ)π1(φ).P (18)(17) −(λ1−λ2)t .(16) Itisthisstationarydistributionthatwewerelookingfor.Theremainingproblemisto findthefunctionsψ1(χ)andπ1(φ),andtocheckthatallassumptionsabouttheboundaryconditionswhichwemadeonthewaytoeq.(16)areactuallysatisfied. AftersomecalculationswecametothefollowingexpressionforPp(φ|χ)(notethatthefunctionsΦ(·)areessentiallythesame,theonlydifferenceistheargument): Pp(φ|χ)= C 16V(φ) − 3 HerethenormalizationconstantCshouldbedeterminedfrom(15).UsingtheWKBap-proximation,wehavecalculated2Φ(z(φ))forawideclassofpotentialsusuallyconsideredinthecontextofchaoticinflation,includingpotentialsV∼φnandV∼eαφ. Thesolutionwehavefoundfeaturesinterestingproperties.Firstofall,itisconcentratedheavilyatthehighestallowedvaluesoftheinflatonfield.Despitethepromisingexponentialprefactorin(19)whichlookslikeacombinationoftheHartle-Hawking16andtunneling19wavefunctions,thedependenceofΦ(z(φ))onφappearedtobeevenmoresteepthatthoseexponents.Thisfunctionfallsexponentially(withtherategovernedbythePlanckianener-gies)towardsthelowervaluesoftheinflatonfieldandstronglyoverwhelmsthedependenceoftheexponentinfrontofit.Onlynearthe“endofinflation”boundarythesolution(19)revealssomethingfamiliar—thedependenceontheinitialfieldχbecomessimilartothesquareoftunnelingwavefunction(simultaneously,thecorrespondingdependenceonthefinalfieldφcancelsout).And,aswehavealreadymentioned,therelaxationtimeisverysmall(whichisalsoaconsequenceofthefactthatthedynamicsoftheself-reproducingUniverseisgovernedbythemaximalpossibleenergies).Thestationarydistributionfoundin2isnotverysensitivetoourassumptionsconcerningtheconcretemechanismofsuppressionofpro->φp.Wehopethattheseresultsmayshowusawayductionofinflationarydomainswithφ∼ towardsthecompletequantummechanicaldescriptionofthestationarygroundstateoftheUniverse. A.M.isgratefultoA.LindeandD.LindeforfruitfulandenjoyablecollaborationonthisprojectandtoA.Starobinsky,S.MolchanovandA.Vilenkinfordiscussions. References 1.A.Linde,D.Linde,A.Mezhlumian,FromtheBigBangTheorytotheTheoryofaSta-tionaryUniverse,Stanfordpreprinttoappear.2.A.LindeandA.Mezhlumian,Stanfordpreprinttoappear.3.A.D.Linde,Phys.Lett.129B(1983)177. 4.A.D.Linde,Phys.Lett.108B(1982);114B(1982)431;116B(1982)335,340;A.AlbrechtandP.J.Steinhardt,Phys.Rev.Lett.48(1982)1220.5.D.LaandP.J.Steinhardt,Phys.Rev.Lett.62(19)376. 6.A.D.Linde,Phys.Lett.175B(1986)395;PhysicaScriptaT15(1987)169. 7.A.S.GoncharovandA.D.Linde,Sov.Phys.JETP65(1987)635;A.S.Goncharov,A.D.LindeandV.F.Mukhanov,Int.J.Mod.Phys.A2(1987)561. 8 8.A.D.Linde,ParticlePhysicsandInflationaryCosmology(Harwood,Chur,Switzer-land,1990);A.D.Linde,InflationandQuantumCosmology(AcademicPress,Boston,1990).9.M.AryalandA.Vilenkin,Phys.Lett.B199(1987)351.10.Y.NambuandM.Sasaki,Phys.Lett.B219(19)240; Y.Nambu,Prog.Theor.Phys.81(19)1037. 11.M.Miji´c,Phys.Rev.D42(1990)2469;Int.J.Mod.Phys.A6(1991)2685.12.A.A.Starobinsky,in:FundamentalInteractions(MGPIPress,Moscow,1984),p. 55.13.A.S.GoncharovandA.D.Linde,Sov.J.Part.Nucl.17(1986)369. 14.A.A.Starobinsky,in:CurrentTopicsinFieldTheory,QuantumGravityand Strings,LectureNotesinPhysics,eds.H.J.deVegaandN.Sanchez(Springer,Heidelberg1986)206,p.107.15.T.S.BunchandP.C.W.Davies,Proc.Roy.Soc.A360(1978)117;A.VilenkinandL. Ford,Phys.Rev.D26(1982)1231;A.D.Linde,Phys.Lett.116B(1982)335;A.A.Starobinsky,Phys.Lett.117B(1982)175;A.Vilenkin,Nucl.Phys.B226(1983)527.16.J.B.HartleandS.W.Hawking,Phys.Rev.D28(1983)2960.17.Ya.B.ZeldovichandA.D.Linde,unpublished(1986). 18.A.MezhlumianandS.A.Molchanov,StanfordUniversitypreprintSU-ITP-92-32(1992), availableascond-mat/9211003.19.A.D.Linde,JETP60(1984)211;Lett.NuovoCim.39(1984)401;Ya.B.Zeldovich andA.A.Starobinsky,Sov.Astron.Lett.10(1984)135;V.A.Rubakov,Phys.Lett.148B(1984)280;A.Vilenkin,Phys.Rev.D30(1984)549. 9
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务