全等三角形压轴大题
36、(2009东营)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,
CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
A D
B
图① E G A G E F D A F D E F
C B 图②
C B 图③
C 30、(2009年牡丹江)已知Rt△ABC中, ACBC,∠C90,D为AB边的中点,EDF90°, EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当EDF绕D点旋转到DEAC于E时(如图1),易证S△DEFS△CEFS△ABC.
当EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
A 12
E
A
A D D E C
图2
F
B
E
图3
D C
B
B F
C
F 图1
12、(2009烟台市)如图,直角梯形ABCD中,AD∥BC,BCD90°,且
CD2AD,tanABC2,过点D作DE∥AB,交BCD的平分线于点E,连接BE.
(1)求证:BCCD;
(2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG..求证:CD垂直平分EG.
(3)延长BE交CD于点P.求证:P是CD的中点.
37、(眉山)在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、EC、BF、CF。。 ⑴判断四边形AECD的形状(不证明);
⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明。
⑶若CD=2,求四边形BCFE的面积。
B
A
D E
C G
9、(2009临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.AEF90,且EF交正方形外角DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AEEF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
B E C
图1
G
B
E C 图2 A
D
F G
B 图3
C E G
F A
D
8、(2009年湖州)若P为△ABC所在平面上一点,且APBBPCCPA120°,则点P叫做△ABC的费马点.
(1)若点P为锐角△ABC的费马点,且ABC60°,PA3,PC4,则PB的值为________; (2)如图,在锐角△ABC外侧作等边△ACB′连结BB′. 求证:BB′过△ABC的费马点P,且BB′=PAPBPC.
A B
B
C
40.在△ABC中,ACB90,ACBC,直线MN经过点C,且ADMN于D,BEMN于E.(1)当直线MN绕点C旋转到图1的位置时,求证: ①ADC≌CEB;②DEADBE;
(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.
(1)证明:∠APD=∠CBE;
(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?
26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.
(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形? (2)分别求出菱形AQCP的周长、面积.
3. (2011•江苏宿迁,27,12)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
30、(10分)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,M、N分别为AD、BC的中点,E、 F分别为BM、CM的中点。(1)试探索四边形MENF是什么图形?请证明你的结论。 (2)若四边形MENF是正方形,则梯形的高与底边BC有何数量关系?并说明理由。
2. (2011•南通)已知:如图1,O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△F'OE'(如图2). (1) 探究AE′与BF'的数量关系,并给予证明; (2) 当α=30°时,求证:△AOE′为直角三角形.
AEBMFDNC