一、知识网络
二、画龙点睛
概念
1、曲线运动:
⑴曲线运动定义:曲线运动是一种轨迹是曲线的运动,其速度方向随时刻不断变化 ⑵曲线运动中质点的瞬时速度方向:确实是曲线的切线方向
⑶曲线运动是一种变速运动,因为物体速度方向不断变化,因此曲线运动的物体总有加速度
【注意】曲线运动一定是变速运动,一定具有加速度;但变速运动或具有加速度的运动不一定是曲线运动
⑷两种常见的曲线运动:平抛运动和匀速圆周运动 2、物体做曲线运动的条件:
⑴曲线运动的物体所受的合外力不为零,合外力产生加速度,使速度方向〔大小〕发生变化
⑵曲线运动的条件:物体所受的合外力F与物体速度方向不在同一条直线上 ⑶力决定了给定物体的加速度,力与速度的方向关系决定了物体运动的轨迹 F〔或a〕跟v在一直线上→直线运动:a恒定→匀变速直线运动; a变化→变加速直线运动。 F〔或a〕跟v不在一直线上→直线运动:a恒定→匀变速曲线运动; a变化→变加速曲线运动
⑷依照质点运动轨迹大致判定受力方向:做曲线运动的物体所受的合外力必指向运动轨迹的内侧,也确实是运动轨迹必夹在速度方向与合外力方向之间。 ⑸常见运动的类型有:
①a=0:匀速直线运动或静止。
②a恒定:性质为匀变速运动,分为:① v、a同向,匀加速直线运动;②v、a反向,
’
匀减速直线运动;③v、a成角度,匀变速曲线运动〔轨迹在v、a之间,和速度v的方向相切,方向逐步向a的方向接近,但不可能达到。〕 ③a变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时刻变化。 例题:如下图,物体在恒力F作用下沿曲线从A运动到B,这时,突然使它所受力反向,大小不变,即由F变为-F。在此力作用下,物体以后运动情形,以下正确的选项是
‘
、
A.物体不可能沿曲线Ba运动; B.物体不可能沿直线Bb运动; C.物体不可能沿曲线Bc运动; D.物体不可能沿原曲线由B返回A。
解析:因为在曲线运动中,某点的速度方向是轨迹上该点的切线方向,如下图,在恒力作用下AB为抛物线,由其形状能够画出vA方向和F方向。同样,在B点能够做出vB和-F方向。由于vB和-F不在一条直线上,因此以后运动轨迹不可能是直线。又依照运动合成的知识,物体应该沿BC轨道运动。即物体可不能沿Ba运动,也可不能沿原曲线返回。
因此,此题应选A、B、D。
把握好运动和力的关系以及物体的运动轨迹形状由什么决定是解好此题关键。 答案:A、B、D。
3、运动的合成和分解 速度的合成和分解 ⑴合运动和分运动:假如物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动;那几个运动叫做那个实际运动的分运动
⑵合运动与分运动的关系:
①等效性:各分运动的规律叠加起来与合运动规律有完全相同的成效
②性:某个方向上的运动可不能因为其它方向上是否有运动而阻碍自己的运动性质。③运动性原理〔叠加原理〕:一物体可同时参与几种不同的运动,在研究咨询题时能够把各分运动都看作互相进行,它们互不阻碍。而一个物体的运动能够看成由几个各自进行的运动的叠加而成
④等时性:合运动通过合位移所需的时刻和对应的每个分运动通过分位移的时刻相等。即各分运动总是同时开始,同时终止 ⑶运动合成分解:
①运动的合成和分解:分运动求合运动叫运动的合成,合运动求分运动叫运动的分解 ②运动的合成和分解的运算法那么:是指物体运动的各物理量即位移、速度、加速度的合成与分解
a、合运动的位移等于二分运动位移的矢量和,符合平行四边形法那么 b、合运动的速度等于二分运动速度的矢量和,符合平行四边形法那么 c、合运动和分运动具有等时性
⑷当两直线运动的合速度的方向和合加速度的方向重合时,合运动为直线运动 ⑸曲线运动可分解为两个方向上的直线运动,分不研究两方向上的受力和运动规律 4、绳拉物体的速度分解咨询题:
原理:物体运动的速度v为合速度,那个速度在沿绳子方向的分速度v1确实是绳子拉长或缩短的速度,物体速度v的另一个分速度v分确实是绳子的摆动速度,它一定和v1垂直总之一句话:绳端速度总沿着绳子方向和垂直于绳子方向分解〔可用微元法证明〕 5、小船渡河的四个极值咨询题
渡河咨询题,是运动合成与分解的典型模型,那个地点介绍四个极值咨询题及其应用 设船对水的速度为V1〔即船在静水的速度〕,水的速度为V2〔即水对河岸的速度〕,河的两岸平行,宽度为L
⑴当船头垂直河岸时,渡河时刻最短:tL v1⑵当V1>V2,合速度方向垂直河岸时,渡河位移最小:s=L ⑶当V1 v1 ⑷船沿指向下游的固定航线渡河,当船头与船的合速度垂直,即V1⊥Vw合时,船相对水的速度最小,且等于V水垂直于航线的重量。 5、平抛运动 ⑴平抛运动定义:水平抛出的物体,只在重力作用下的运动叫做平抛运动 ⑵平抛运动的特点: ①只受重力作用,且有一水平初速度。 ②水平方向作匀速直线运动〔加速度为零〕,竖直方向作自由落体运动〔加速度为g〕 ③平抛运动是匀变速曲线运动,它的轨迹是抛物线 ⑶平抛运动的处理方法: ①水平方向:速度为v0的匀速直线运动,vx②竖直方向:自由落体运动,vyX gtv02,Xv0t,txXv0 ,Y12gt,ty2hg O X0 只考虑竖直方向上, V0 ③任意时刻的速度:vV tanvyvxgtv022vxvyvy2gh, hgT2 S Vy , θ为v与v0间的夹角。 Y x2y2yx④任意时刻的位移:s 1gt2v012tantan,α为s与v0间的夹角。 ⑤平抛物体运动中的速度变化 水平方向分速度保持vx=v0。竖直方向,加速度恒为g,速度vy=gt,从抛出点起, 每隔Δt时刻的速度的矢量关系如下图,这一矢量关系有两个特点: a、任意时刻的速度水平重量均等于初速度v0 b、任意相等时刻间隔Δt内的速度改变量均竖直向下,且Δv=Δvy=gΔt 注意:运动学公式只适用于直线运动,因此曲线运动要分解为两个直线运动后才能应用运动学公式。 例题:如下图,以9.8米/秒的水平初速度v0抛出的物体,飞行一段时刻后,垂直地撞在倾角为30的斜面上,可知物体完成这段飞行的时刻是 A. 3秒 323秒 3 B. C.3秒 D.2秒 解析:平抛运动能够认为是水平匀速和自由落体运动的合运动。飞行时刻与初速无关,它能够从飞行高度或落地竖直分速度的信息中取得,此题能够使用竖直分速度这一信息。把垂直撞在斜面的速度分解为水平分速度v0和竖直分速度vyvyv0ctg30,vygt,解之得t3秒。正确选项C。 例题:宇航员站在一星球表面的某高处,沿水平方向抛出一个小球,小球落到星球表面,测得抛出点与落地点之间的距离为L。假设抛出时的初速度增大到2倍,那么抛出点与落地点之间的距离为3L,如下图。小球飞行时刻为t,且两落地点在同一水平面上。求该星球表面的重力加速度的数值。 解析:此题是近几年来的新题型,它的特色是给出了抛出点与落地点间的距离这一信息而没有直截了当给出,飞行的高度或水平射程。我们只要把的信息与飞行高度或水平射程建立联系,就又把这类习题改成了传统题,即把未知转化为。 设抛出点高度为h,初速度为v,星球表面重力加速度为g。 23L2h22vt。 由题意可知:hgt2,L2h2vt2,12解之得:g23L 3t223L。 3t2答案:该星球表面重力加速度数值为 假如此题再该星球半径为R,万有引力常数为G,还能够求该星球的质量M,读者能够 23LR2。 3Gt2试一试,答案为M例题:如下图,一个同学做平抛实验时,只在纸上记下过起点的纵坐标y方向,但未记录平抛运动的起点,并描下了平抛运动的一段轨迹,在轨迹上取A、B两点,用刻度尺分不测量出它们到y轴的距离x1、x2以及AB的竖直距离h,那么小球平抛运动的初速度v0 。 解析:画出平抛运动由抛出点开始的轨迹如下图。用平抛运动是水平匀速和自由落体合运动的知识,把参量还原到抛出点去考虑。又转化成了平抛的基此题。 设从抛出点到A、B的竖直高度分不为HA和HB。 由题意可知:hHBHA 22。 tA再设平抛到A、B的时刻为tA和tB,hgtB12xv0t,x1v0tA,x2v0tB 22x2x11hg22,v02v0v022 gx2x12h 答案: v02h 6、匀速圆周运动的特点: ⑴匀速圆周运动的定义:做圆周运动的物体在相等的时刻内通过的弧长相等。 ⑵匀速圆周运动的轨迹:是圆,且任意相等的时刻内半径转过的角度相等。 ⑶匀速圆周运动的性质:①〝匀速〞指的是〝匀速率〞,即速度的大小不变但速度的方向 时刻改变。 ②加速度大小不变,但加速度的方向时刻改变,因此是变加速曲 线运动。 7、圆周运动的表征物理量: ⑴线速度v:①定义:圆周运动的瞬时速度;单位时刻内通过的弧长 ②大小:线速度=弧长/时刻,即v=s/t; ③方向:圆周的切线方向; ④匀速圆运动线速度的特点:线速度大小不变,但方向时刻改变 ⑵角速度ω: ①定义:半径在单位时刻内转过的角度; ②大小:角速度=角度〔弧度〕/时刻即:ω=φ/t ③单位:弧度每秒,即:rad/s; ④匀速圆周运动中角速度特点:角速度恒定不变 ⑶周 期T: ①定义:匀速圆周运动物体运动一周所用的时刻; ②大小:周期=周长/线速度,即:T=2πr/v ③单位:秒,即s; ④匀速:圆周运动中周期的特点:周期不变 ⑷频 率f: ①定义:每秒钟完成匀速圆周运动的转数 ②大小:f=1/T ③单位:赫兹,即Hz,1Hz=1转/秒 ⑸转 速n: ①定义:单位时刻内做匀速圆周运动的物体转过的圈数,符号n ②大小:转速的大小就等于频率的大小 ③单位:国际单位制中用转/秒,日常生活中也用转/分 ⑹匀速圆周运动各物理量之间的关系: ①各量关系:v=2πr/T, ω=2π/T=2πf=2πn(n的单位为转/秒), v=ωr ②同一转盘上半径不同的各点,角速度相等但线速度大小不同 ③皮带传动或齿轮传动的两轮边缘线速度大小相等,但角速度不一定相同 ④当半径一定时,线速度与角速度成正比;当角速度一定时,线速度与半径成正比 8、向心力 ⑴向心力定义:做匀速圆周运动的物体受到的合外力总是指向圆心,那个力叫做向心力。 【注意】向心力是依照力的作用成效命名,不是某种专门性质的力。 ⑵向心力的来源:能够由重力、弹力、摩擦力等提供。总之是物体所受的合外力提供了物 体做匀速圆周运动所需的向心力。 ⑶向心力的方向:总是沿半径指向圆心,方向时刻与线速度方向垂直,故方向时刻在改变。 向心力是变力。 ⑷向心力的作用成效:只改变线速度的方向,不改变线速度的大小。 22gx2x1 【缘故】向心力指向圆心,而物体的运动方向沿圆周上该处的切线方向,两者相互垂直。 物体在运动方向所受的合外力为零。在那个方向上无加速度。速度大小可不能改变,因此向心力只改变速度的方向,。 ⑸向心力的大小: ①向心力大小:Fn=mrω=mr(22 2222 )=mr(2πf)=mr(2πn)TFn=m v/r ②向心力大小与多个变量有关。因此在分析咨询题时,一定要利用操纵变量的方法不处理。即在设定其它量不变的条件下,来分析所需向心力与某一变量的关系。 ③向心力F跟r、ω〔或v〕是瞬时对应关系。 ⑹匀速圆周运动的条件:具有初速度v,合外力大小不变,方向时刻垂直线速度v,指向圆心 【注意】物体在恒力作用下不可能作匀速圆周运动。 9、向心力作用下使物体产生的加速度―――向心加速度an ⑴向心加速度:在向心力作用下物体产生的加速度叫做向心加速度 【注意】向心力与向心加速度具有瞬时对应关系,即向心力改变时,向心加速度赶忙改变 ⑵向心加速度的方向:始终垂直于线速度,沿着半径指向圆心,且每时每刻都在不断地变 化。因此匀速圆周运动是变加速曲线运动 ⑶向心加速度的大小:an= rω=r(an=v/r an=vω ⑷向心加速度是描述速度方向变化快慢的物理量。 ⑸当v一定时,an与r成反比;当ω一定时an与r成正比,注意:r、v及ω间有制约关系 例题:以下正确的选项是 A.匀速圆周运动是一种匀速运动 B.匀速圆周运动是一种匀变速运动 C.匀速圆周运动是一种变加速运动 D.因为物体有向心力存在,因此才使物体不断改变速度的方向而做圆周运动 2 2 2222 )=r(2πf)=r(2πn)T 解析:匀速圆周运动的加速度大小不变而方向在时刻改变,因此属于变加速运动。力是改变物体运动状态的缘故,向心力对速度大小的改变没有奉献,它作用只是不断改变速度方向,因此正确选项是C、D。 10、离心现象: ⑴定义:做圆周运动的物体,在所受合力突然消逝或者不足于提供圆周运动所需的向心力的情形下,就做逐步远离圆心的运动,这种运动就叫离心运动 ⑵离心现象的应用: ①离心干燥器〔洗衣机的脱水筒〕:利用离心运动把附着在物体上的水分甩掉 ②用离心机把体温计的水银柱甩回玻璃泡内 ③〝棉花糖〞的制作 ⑶离心现象的防止: ①车辆转弯时速度不能超过规定的速度:车辆转弯时所需的向心力大于最大静摩擦力时,即最大 静摩擦力不能提供汽车转弯时所需的向心力时,汽车将做离心运动而造成交通事故 ②高速转动的砂轮、飞轮等都不得超过承诺的最大速度,假如转速过高,砂轮、飞轮内部分子间的相互作用力不足以提供所需的向心力时,离心运动会使它们破裂,以致酿成事故。 例题:今后人类离开地球到宇宙中去生活,能够设计成如下图的宇宙村,它是一个圆形的密封建筑,人们生活在圆环的边上,为了使人们在其中生活不至于有失重感,能够计它旋转,设那个建筑物的直径为200m,那么,当它绕其中心轴转动的转速为多少〔r/s〕时,人类感受到像生活在地球上一样要承担10m/s2的加速度?假如转速超过了上述值,人们将有如何样的感受? 解析:处于宇宙间的物体处于完全失重状态,现要生活在其宇宙村中的人无失重感,题中告诉让该装置转动,即处于宇宙村边缘的人随宇宙村一起旋转时,所需的向心加速度等于题中所给的10m/s2时对应的转速确实是所求转速。 由圆周运动的向心力加速度公式有a=〔2πn〕2R 得n= 12a 代入数值有n=0.05r/s 。 R假设转速超过此值,由上式可知,其加速度将大于10m/s2,因而人有超重的感受。 点评 这是一道假设推理题,要求建立一个物理假象的模型,这能培养学生的想象力和 处明白得决咨询题的能力,同时这也是高考趋势的进展方向。要求考生能够依照的知识和所给的物理事实、条件,对物理咨询题进行逻辑推理和论证,得出正确的结论或作出正确的判定,并能把推理过程表达出来,论证推理有助于加强对学生的推理能力的考查。 规律 1、匀速圆周运动解题步骤: ⑴明确研究对象,确定它在哪个平面内做圆周运动,找出圆心和半径 ⑵确定研究对象在某位置〔某时刻〕所处状态,进行受力分析,作出受力分析图,找出向心力的来源 222 ⑶依照向心力公式Fn= mωr=m v/r=mωv=m〔2π/T〕r列方程,取〝向心〞方向为正 ⑷检查结果的合理性,并进行必要的分析讨论。 例题:如下图一皮带轮传动装置,右轮半径为r,a是它边缘上的一点。左侧是一轮轴,大轮的半径为4r,小轮半径为2r,b点在小轮上,到小轮中心距离为r,c点和d点分不位于小轮和大轮的边缘上,假设在传动过程中,皮带不打滑,那么 A.a点与b点的线速度大小相等 B.a点与b点的角速度大小相等 C.a点与c点的线速度大小相等 D.a点与d点的向心加速度大小相等 v22R2a2R,解析:匀速圆周运动中各参量的关系,即vR,,,vRTTav。在皮带传动中这些参量的专门制约和联系是:皮带上各点线速度大小相等;同轴 的轮上各点角速度相等。由题意可知vavc,cbd再通过简单运算可得出正确选项是C、D。 例题:质量相等的小球A、B分不固定在轻杆OB的中点及端点,当杆在光滑水平面上绕O点匀速转动,如下图,求杆的OA段及AB段对球的拉力之比? 解析:A、B小球受力如下图,在竖直方向上A与B处于平稳态。在水平方向上依照匀 2速圆周运动规律TATBmOA, TBm2OB,OB2OA。 TAm2·3OA,TBm22OA, TA∶TB = 3∶2 答案:TA∶TB = 3∶2 2、匀速圆周运动的实例分析 ⑴火车拐弯咨询题: 由于火车的质量比较大,火车拐弯时所需的向心力就专门大。假如铁轨内外侧一样高,那么外侧轮缘 所受的压力专门大,容易损坏;有用中使外轨略高于内轨,从而重力,铁轨支持力和侧向压力的合力 提供火车拐弯时所需的向心力 例题:铁轨拐弯处半径为R,内外轨高度差为H两轨间距为L,火车总质量为M,那么: ⑴火车在拐弯处运动的〝规定速度vP〞大小为 , ⑵假设火车实际速度大于vP,那么 轨将受到侧向压力, ⑶假设火车实际速度小于vP,那么 轨将受到侧向压力。 v2解析:⑴mgtanθ=m RvgRtangRH/L ⑵火车做离心运动,外轨受到侧向压力。 ⑶火车做向心运动,内轨受到侧向压力。 例题:在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ.设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( ) v2v2A .arcsin B . arctan RgRg2v2v21C . arcsin D. arccot RgRg2解析:如下图,要使摩擦力为零,必使车受的重力与支持力的合 v2v2力捉供向心力,那么:Fn=mgtanθ=m,故因此θ=arctan。 RgR即答案为B。 点评这是一道综合应用题,是用圆周运动知识来解决处理实际物理 咨询题,这在实际生活中有着广泛的应用,例如铁路、高速公路、杂技表演等,差不多上利用自身的重力分力提供转弯所需的向心力。 ⑵〝水流星〞节目分析 例题:⑴绳系杯子在竖直平面内圆运动,最高点杯中水不流 出的缘故是: 。 ⑵杯在最高点的最小速度vmin= , ⑶设杯内水的质量为m,那么当最高点的速度v1>vmin时, 杯对水的压力N= , ⑷设杯运动到最低点速度为v2,那么现在水对杯的压力 N`= 。 解析:⑴水和重力提供水做圆周运动的向心力 ⑵mgmv2 vlgl v2v2⑶mgNm Nmmg llv2v2⑷Nmgm Nmmg ll⑶〝水流星〞节目的变形讨论 ①〝绳模型〞 如下图,在最高点没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情形 例:绳拴一小球在竖直平面内做圆周运动、小球在竖直平面内单轨道的内单侧做圆周运动 ⑴临界条件:绳子或轨道对小球没有作用力 mgmv2R v临界=gR 〔可明白得为恰好转过或恰好转只是〕 【注意】假如小球带电,且空间存在电、磁场,临界条件应是小球所受重力、电场力和 洛仑兹力的合力等于向心力,现在临界速度v临界≠√gR ⑵小球能过最高点的条件:vgR 〔当v>√gR时,绳对球产生拉力,轨道对球产生支持力〕 ⑶小球不能过最高点条件:vgR〔实际上球还没到最高点就脱离了轨道〕 ⑷绳拴小球或小球在竖直平面内单轨道内侧做圆周运动,在最高点的最小速度vmin=gR 例题:一宇航员抵达一半径为R的星球表面后,为了测定该星球的质量M,做如下的实验,取一根细线穿过光滑的细直管,细线一端拴一质量为m的砝码,另一端连接在一固定的测力计上,手握细直管抡动砝码,使它在竖直平面内做完整的圆周运动,停止抡动细直管,砝码可连续在同一竖直平面内做完整的圆周运动,如下图,现在观看测力计得到当砝码运动到圆周的最低点和最高点两位置时测力计的读数差为△F,引力常量为G,试依照题中所提供的条件和测量结果,求出该星球的质量M。 2v12v2 解析:最高点F1+mg=m,最低点F2-mg= m,依照机械能守恒定律: rr11Fmv12+mg·2r=mv22,可得g=,星球表面上质量为m的物体所受重力等于万有引力,22mR2gR2FGMm即=mg,M= G6GmR2点评这是一道与万有引力知识相结合的试题,一要解决圆运动的咨询题,二要处理星 球表面重力加速度的概念。 ②〝杆模型〞 如下图,在最高点有物体支撑的小球,在竖直平面内做圆周运动过最高点的情形 例题:杆粘小球在竖直平面内做圆周运动或小球在竖直平面内双轨道的内侧做圆周运动。 ⑴临界条件:v=0〔有物体支承的小球可不能脱落轨内,只要还有向前速度都能向前运动〕 ⑵小球在最高点的受力分析:〔杆或双轨道的内外环对小球产生的弹力即可指向圆心也可背向圆心〕 ①当v=0时, 杆对球作用力为支持力或内环对球有支持力,方向和指向圆心方向相反, 大小为:N=mg。 ②当0<v<√gR时,杆对球作用力为支持力或内环对球有支持力,方向和指向圆心方向相反, 2 大小为:N=mg-mv/R; N随v的增大而 减小 。 ③当v=√gR时, 杆对球作用力N=0或内外环对球均无作用力。 ④当v>√gR时, 杆对球作用力为拉力或外环对其有支持力,方向指向圆心方向 2 大小为:N=mv/R-mg; N随v的增大而 增大 。 例题:长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内作圆周运动,关于小球在过最高点的速度v,以下表达中正确的选项是 A.v极小值为gL B.v由零增大,向心力也逐步增大 C.当v由gL逐步增大时,杆对小球的弹力也逐步增大 D.当v由gL逐步减小时,杆对小球的弹力逐步减小 解析:由于杆既能够承担压力又能够承担拉力,因此小球受合力既能够大于小球重力又 mv2能够小于小球重力,也能够等于小球重力。当杆受力为零时,重力充当向心力mg, LvgL。当vgL时杆对小球施拉力;vgL时杆对小球施压力,因此v极小值能够小于gL,只要大于0即可。故正确选项是B、C、D 例题:一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,通过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,假设要现在两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是 。 解析:这是一道圆周运动与机械能守恒的综合题目,也是一道情形新颖的讨论题,要求能正确地对A、B两球进行受力分析,判定出A、B受到圆管对它们的作用力的方向,列出正确的方程式,咨询题便会迎刃而解。由题意可知,为了使在最高点的B球和最低点的A球对圆 2v0管的作用力的合力为零,那么有:对A,NA-m1g= m1〔NA的方向必向上〕。 R2v0对B,NB+m2g= m2 (NB的方向必向下).又知B球在最低点时速度为 v0,在 R最高点时速度为 v,那么应有 1122m2v0= m2v+ m2g·2R,依题意。 22那么有A、B对圆管的合力为零.整理得m1、m2、R及NA=NB,那么有A、B对圆 2v0管的合力为零。故因此得〔m1-m2〕+〔m1+m2〕g=0。 R点评此题考查了机械能的有关知识和圆周运动的有关知识。要求对运动物体有正确 的守力分析,要对物体的运动状态进行确定。 ⑷汽车过桥咨询题: 例题:汽车质量为m,通过一桥: 2 ⑴当汽车以速率v通过半径为R的拱形桥,在最高点对桥的压力为: N=mg-mv/R;且压力随v的增大而 减小 ; ⑵当车的速度v`= gR 时,其在最高点对桥的压力为零; 2 ⑶如汽车以速率v通过半径为R的凹形桥,那么最低点桥对车的支持力为N=mv/R+mg; 且支持力随v的增大而 增大 。 ⑸水平转台上物体运动分析: 例题:如图,水平转台上的物体m随转台一起匀速转动, ⑴当半径不变,角速度增大时,设物体仍作匀速圆周运动,那么物体受到的静摩擦力 增大 ,弹力 不变 ,向心力 增大 ,向心加速度 增大 ; ⑵当角速度不变,半径增大时,设物体仍作匀速圆周运动,那么物体受到的静摩擦力 增大 ,线速度 增大 ,向心加速度 增大 。 例题:如下图,水平转台上放有质量均为m的两小物块A、B,A离转轴距离为L,A、B间用长为L的细绳相连,开始时,A、B与轴心在同一直线上,线被拉直,A、B与水平转台间摩擦因数均为μ,当转台的角速度达到多大时线上显现张力?当转台的角速度达到多大时A物块开始滑动? 解析:绳上开始显现张力时,B受的最大静摩擦力刚好充当向心力, 即μmg=mω2·2L, ω=g/2L 当A所受摩擦力达到最大静摩擦力时,A开始滑动, 现在,μmg-F=mω21L,F+μmg= mω21·2L 故2μmg=3 mω21L,ω1=2g/3L 点评物体转动的加速度增加,其所需的向心力也相应增加,因此摩擦力逐步增加, 但静摩擦力有一个极值,即最大静摩擦力。假如超过极限,外力不能提供物体作圆周运动所需的向心力就要开始滑动。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务