四年级数学说课稿三篇
四年级数学说课稿 篇1
一、教学内容:人教课标版数学四年级上册第五单元例5“商的变化规律”第三个“商不变的规律”。
二、教材分析“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。裴老师教学的这一课,是在学生刚刚学习了除数不变,被除数和商的变化规律和被除数不变,除数和商的变化规律的基础上进行教学的。由于有了前面学习的'基础,学生在语言表述和思维方面都没有太大的困难,学习起来比较轻松。
三、教学目标、重点难点本节课的教学目标是:
1、通过观察、比较、探索,使学生发现被除数和除数同时乘或除以一个相同的数(0除外),商不变的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重点:通过观察、比较、探讨发现商的变化规律。
教学难点:理解被除数和除数的变化同步性,商不变时,被除数和除数相同的变化情况。
四、教学设想1、充分发挥学生主体作用,自主探究
本节课的教学内容是在前面学习两条规律的基础上进行教学的。通过这一节课的学习,完善了三个规律,使商的变化规律更完整,也为学生今后的数学学习打下了坚实的基础。通过课堂教学的实施,引导学生积极参与到探究规律、总结规律的过程中,让学生在观察、思考、尝试、交流的过程中,实现师生互动、生生交流,促进学生主动参与知识的形成过程。
2、紧抓学生知识的生长点,将学生知识、能力有效延伸
本课通过研究商不变的规律,在学生初步感知到被除数、除数、商之间存在着变化的规律基础上,抓住学生这个知识的生长点,从单纯的算式计算延伸到算式内部、算式之间的联系上,延伸学生的知识范围。进而使学生通过本节课研究,经历数学规律产生或发现的一般过程。
3、尝试猜测—验证—总结结论的数学学习方法,学会辨证的分析问题
本课使学生在平常的口算练习中,根据思考,得出一个初步的推测,这个推测是否正确,是否具有普遍性都需要进行严格的验证,在验证的过程中,不仅仅使学生学会从广泛的正面举例中证明自己的推测,还要全面的分析,从相反方面思考举出反例,使得出的结
论更加全面、正确。举反例对学生来说是个突破,能用逆向思维分析解决问题,对于学生将来的学习有着非比寻常的意义。整节课就在学生不断的猜测—验证—总结结论中,参与了获取知识的过程,尝试了这种数学学习方法。体现了新课程标准提出的不仅关注学生的学习结果,更要关注学生的学习过程,不仅要关注学生的知识和技能,更要关注学生的情感态度价值观。
五、教学过程(一)创设情境,导入新课
教师出示:900÷25=?=36 6000÷125=? = 48 让学生口算结果,后面的这道题目由于难度较大,所以学生算不出来,而教师轻易的算了出来,给学生留下悬念。
(二)自主探索,发现规律
1、初步发现规律
口算一组:
14÷2=7 560÷80=7
140÷20=7 5600÷800=7
280÷40=7
观察这组算式,
得出:被除数乘10,2,除以2, 除数也跟着变化,而商不变
2、逐步完善,让学生举例验证我们刚发现的规律
询问学生还有别的发现吗?所有的数都符合这一规律吗?
突出被除数和除数同时乘0是不可以的。[ — __jxSJ。 —更多数学说课]
(三)反馈练习,应用规律
这一部分分四个层次进行学习。
1、规律的直接应用:第94页第4题:从上到下,根据第1题的商写出下面两题的商。
72÷9= 36÷3= 80÷4=
720÷90= 360÷30= 800÷40=
7200÷900= 3600÷300= 8000÷400=
2、规律的运用增加了难度,让学生体会到应用规律计算的方便:1400000÷__00=
3、通过判断哪个算式的结果与48÷12=4的商相等,说说理由的练习,进一步深化学生对规律的理解和应用。
① (48÷4)÷(12÷4) ② (48×5)÷(12×5)
③ (48×3)÷(12÷3) ④ (48÷3)÷(12÷4)
4、考查学生对规律的灵活掌握情况,通过900÷25的题目,让学生把被除数和除数同时乘4,然后化难为易。
在这几个巩固反馈中,采用不同的方式,从不同的侧面帮助学生理解和掌握“商不变规律”。而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
四年级数学说课稿 篇2
课程改革,让我们每一位数学老师强烈意识到,数学与生活紧密相联。统计与概率既是生活内容,也是数学内容。今天我说课的内容就是西师版课标教材小学数学四年级下册的统计知识DD条形统计图。
一、教材分析:
本单元,是继学习了单式条形统计图和相应统计表后出现的复式条形统计图的知识。这后还会认识更多形式和种类的统计图,如复式折线统计图、扇形统计图等。不难看出,本单元内容既是旧知的迁移与发展,也是以后学习的认知桥梁。
单元内有4个例题,前两例在于帮助学生认识特征,后两例引导学生学会画图。而本课学习例1、例2。例1以回顾旧知为起点,引入复式条形统计图并初步认识。例2则重在会看条形统计图,会简单的分析统计数据并填写相应的统计表。在教学设计中,我将创造性地使用教材,充分利用例1的素材与例2有机整合,完成整课的教学DD认识复式条形统计图。
二、学情分析
学生是学习的主体。
四年级下学期的学生,已经具备了初步的观察、分析能力。但形象思维仍占主要地位。
在第一学段中,已掌握部分统计知识,具有一定的收集、整理、描述、分析数据的能力。
而通过长期地学习策略和思维的训练,我班的孩子,不但基础扎实而且思维活跃。具备一定的自主探究、合作学习的经验与能力。
三、教学目标
根据内容的分析和学生的把握。确定以下教学目标:
通过实例,认识复式条形统计图及相应的统计表。
能根据统计结果作出分析,判断、预测,解决简单的实际问题。进一步培养学生的统计意识和能力。
经历观察分析数据的过程,让学生体验统计在日常生活中的价值。
鉴于预设的目标,学生的认知水平,认为本课的重点为:认识复式条形统计图的特征,会正确分析相关的数据。难点为:知道条形统计图中单式与复式的区别。
四、教学策略
我校进行了3年的《小学数学学习策略和思维策略》的课题研究,引发教师教学方式和学生学习方式的变革。本课就主要采用了其中的“问题探究策略”。问题探究策略,以问题为核心,以研究问题为重点,以培养学生思维策略为目标,设计迁移性、过渡性、反馈性、强化性、延伸性等问题。通过有效问题的有效解决,以促进学生的认知发展。肖伯纳说过:“倘若你有一个苹果,我也有一个苹果,而我们彼此交换这些苹果,那么你和我仍然各有一个苹果,但是,倘若你有一种思想,我有一种思想,而我们彼此交流这些思想,那么,我们每个人各有两种思想。”说明合作交流是一种学习,更是一种创新。在教学策略的引领下,学生的学习方式采用“自主探究、合作学习”为主。
五、教学过程
因此教学过程设计为:创设情景,提出问题,探索问题,解决问题,深化认识,运用提高六个环节。围绕“问题”展开教学。
1、创设情景。
为使教学与生活紧密相联。创设了我任教的“四年级三班和四班的学生”准备去郊游的情景。并提问:“这次郊游当中准备开展五个活动,每人可选一项,事先要知道我们班参加各项活动的人数,怎么办?”学生自然的想到要事先进行统计才行,从而产生统计需要。并立即让学生自主开展统计活动。于是,由真实的情景转入学习的初期活动。经历收集、整理数据的过程,并在事先准备的表格纸上制出一张统计图。
与此同时,我将另一个班参加各项活动人数的统计图展示给学生。看到两张反映不同
班级学生人数情况的统计图,自然地会进行比较分析。于是提出活动中的一个关键问题。
2、提出问题。
利用两张统计图中人数接近的一项活动。设问:“三班和四班参加××的人数,谁多谁少?”凭借肉眼观察,肯定会有不同答案,进而发生争执。此时此刻,引导学生想办法。可能会说到用直尺量高度,用直尺比刻度等方法(课件展示)。给予肯定的同时,追问:“有没有简单的方法,能一目了然地看清谁多谁少?”自然会产生把两张统计图合二为一的需要。顺水推舟抛出核心问题:怎样将两张统计图,合二为一?学生在认知需要和问题驱使下,就开始问题的探索。
3、探索问题。
我预设,学生可能会生成这些方法(课件展示)。面对众多的方法,“你认为哪种方法好?说说理由。”引导学生运用“选择探究策略”进行合理选择。让学生体会方法多样性的同时,又懂得寻求方法的合理性。
当两张统计图合并后,继续引导学生探索。问:把这张统计图给班主任,能看明白吗?”“怎样才能使班主任知道哪种直条表示
哪个班的人数呢?”从而在争论、交流中认识复式统计图图例的作用,体验统计图表示的严密性。
4、解决问题。
建构主义认为:新知,纳入认知系统中,形成新的知识结构,才完成了认知的建构,
新知的内化。把复式条形统计图,纳入已有的统计知识中,并明确它的特点,完成知识建构。于是组织学生开展讨论。弄清:“这种新的条形统计图与以前学习的统计图有什么区别?”在相互交流中充分明白复式条形统计图的特点。一有两种颜色的条形;二有图例。三还能反映两组数据情况。充分了解复式条形统计图的内涵后,自然地揭示它的概念名称DD复式条形统计图。
5、深化认知。
问题得以解决,认识如何深化呢?继续利用好例1的素材,让学生发表意见,提出问题和活动建议。如:两个班参加什么项目人数最多?三班参加野炊的人数比四班多几人?等。在提出问题和解决问题中,培养学生对统计结果进行分析的习惯和能力。
树立“学习论”为中心的现代教学观念是课改的追求。为此,让学生自主填写统计表。在任务驱使下,主动学会看懂统计表,并思考填写的方法。学生可能会一行一行地填,也会一栏一栏地填等,从中体会到解决同一问题的不同方法。沟通统计图与统计表之间内在的联系,明确各自的优越性。从而深化学生对复式条形统计图的认识。
6、运用提高。
学以致用。组织学生以小组合作学习的形式完成基本练习DD课堂活动第1和第2题。统计学认为,收集、分析数据,是为预测、干预未来数据和解决问题服务的。为培养学生的预测意识和能力,设计一个拓展问题:“根据你们的分析,预测一下如果再投一次,小刚和小强分别会投进几个呢?”,从而培养学生思维能力。
六、板书设计
为让学生充分地体验复式条形统计图产生的过程,将改变以往在黑板上板书的做法,充分利用多媒体随机生成的功能,将生成的复式条形统计图保留在大屏幕上。直观具体、简洁明了。符合视觉习惯和认知规律。从而提高课堂教学效率。
本课的教学力求体现以生为本的思想,充分联系学生的生活实际和已有经验,紧扣教学重点,有机整合教材,创造性使用教材。问题探究策略的运用,使学生在核心问题的启发下,积极主动的探究学习,促进学生思维的进一步发展。
四年级数学说课稿 篇3
说教材
《折线统计图》一课是四年级下册的内容,它是在学生已经掌握了收集、整理、描述、分析数据的基本方法,会用统计表和条形统计图来表示统计结果的基础上,又一次认识一种新的统计图——单式折线统计图。单式折线统计图的特点除了可以表示一个数量的多少之外,最主要的作用是表示一个数量的增减变化情况。本课内容又为以后的复式折线统计图作准备,通过正确地认读统计图,为今后的统计图分析打下基础。
说教学目标
基于以上认识,我把本课《折线统计图》的教学目标定位于以下几点
1.在条形统计图的基础上认识折线统计图,了解折线统计图的特点,初步了解绘制统计图的过程。
2.根据折线统计图,学生能描述,分析数据,解决问题,让学生体会到数学与生活的
密切联系。
3.根据折线统计图的特点,会根据数据的变化,学会预测问题的结果或趋势,体会折线统计图的现实的作用。
4.在学习探索的过程中培养学生热爱奥运事业的爱国之情。
本课的教学重点设计为:认识折线统计图的特点和学会制作折线统计图。
教学的难点则放在:认识折线统计图的特点。
说教学理念
我确立了“感受生活中处处有数学,用数学知识解决生活中的实际问题。”的设计理念
基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,打破了传统数学课的枯燥无味,给数学课富予新的生命力。导入用奥运会,画图用乐乐的体温表,练习用老总选择人员进行进修等,从而构建一种自主探究、和谐合作的教学氛围,培养学生感受生活中的数学和用数学知识解决生活问题的能力。
说教法
针对学生年龄特点和心理特征,以及他们现在的知识水平。我主要采用了谈话法、演示法、练习法、小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上
教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。特别是采用了课件演示描点的过程使学生清晰地认识到画图的过程,和课件演示线段的的上升、下降及倾斜角度决定增减幅度的特点,从而突破画图和归纳折线统计图的难点。
说学法
教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
说教学过程:
本课分成激趣导入——探究新知——实践应用——总结特征——运用知识五块内容,
在激趣导入部分:通过今年奥运会的知识进行激发学生兴趣,从统计表、条形统计图来直接引入“折线统计图”。
在探究新知部分:复习统计图的各部分名称,了解统计图的制作过程,把统计图补充完整和根据变化趋势预测下一届奥运会中国的金牌数量。
在实践应用环节,我设计了乐乐的体温统计表:让学生制作折线统计图,除了能读懂图外,还初步理解倾斜角度是决定了数量的增减幅度。从而总结特点:
先通过条形统计图与折线统计图异同点的对比,真正理解把握折线统计图的特点。
从不同点来归纳折线统计图的特点:
观察折线统计图中线段上升——数量增加,下降——减少,倾斜角度——增减幅度,从而引出不仅能表示出数量的多少,还清晰能表示出数量的增减变化。
最后,在运用环节,设计了三个练习内容:
一是找生活中的折线统计图并简单分析数量的变化(股票图、心电图)。
二是用江南车城两个销售员的的统计图来选择进修的名额,体会折线统计图的现实的作用。
三是比较两个内容,从而来选择哪一个内容适合用折线统计图来表示。主要是为进一步进一步突出折线统计图能清晰地反映出数量增减变化的特点。
说板书设计
我设计的板书既简洁明了,又一目了然,体现了这一节课的重点与难点。
这节课,我认为学生动手了,但小组合作,讨论得还不够