您好,欢迎来到刀刀网。
搜索
您的当前位置:首页2020-2021学年四川省高三5月高考模拟考试数学(文)试题及答案解析

2020-2021学年四川省高三5月高考模拟考试数学(文)试题及答案解析

来源:刀刀网
高三5月模拟

数学(文)

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个是符合题目要求的。 1、复数(1i)2等于

A.2+2i B.﹣2i C. 2﹣2i D. 2i 2、对于以下判断

(1)命题“已知x,yR”,若x2或y3,则x + y5”是真命题。 (2)设f(x)的导函数为f' (x),若f' (x0),则x0是函数f(x)的极值点。 (3)命题“xR,ex

﹥0”的否定是:“xR,ex

﹥0”。

(4)对于函数f(x),g(x),恒成立的一个充分不必要的条件是f(x)ming(x)max。 其中正确判断的个数是

A.1 B.2 C.3 D.0 3、执行如右图所示的程序框图,输出的S值为 A.

12 B.31174 C.14 D.10 4、以下茎叶图记录了甲乙两组各五名学生在一次英语听力测试中的成绩 (单位:分)

已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为 A. 5,2 B.5,5 C. 8,5 D.8,8

5、设m,n是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若, m,n,则mn B.若ma,m//n,n// ,则, mC.若mn,m, n,则, mD.若//,mm,n, 则m//n 6、已知数列{an}的前n项和Sn=2-2,等差数列{bn}中,b2 = a2,面bn+3+bn-1=2bn+4, (n2,nN+), 则bn=

n+1

A. 2n+2 B.2n C. n-2 D.2n-2

7、△ABC的三内角A,B,C所对边的长分别为a,b,c,设向量p(sinB,ac),q(sinCsinA,ba).若

R,使pq,则角C的大小为

A.

2 B. C. D.

3632t2t

8、设f(x)=(1+e)x-e. 其中xR,t为常数;集合M={xf(x)﹤0,xR},则对任意实常数t,总有

M,0M B.-3M,0M

C.-3M,0M D.-3M,0M

A.-3

9、己知函数f(x)=x3a,aR在[-1,1]上的最大值为M(a) ,则函数g(x)=M(x)-x21的零点个数为 A. 1个 B. 2个 C. 3个 D. 4个

10、节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互,若接通电后的月秒内任一时刻等可能发生,然后每串彩灯在4秒内间隔闪亮,那么这两串彩灯同时通电后它们第一次闪亮的时刻相差不超过1秒的概率是 A.

5917 B. C. D. 16116案填在答

二、填空题:本大题共5小题。每小题5分,共25分,把答题卡相应位置上。

11、某几何体的三视图如图所示,则其体积为_______。 12、已知定义在R上的奇函数f(x)满足f(x+2)=- f(x),则f(-6)_______。

13、函数f(x)=sin(x+

2

的值为

2

)-sin(x-), x(,)的值域是4463_______。

14、从一个盒子中,有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取出的卡片上的数字之积为偶数的概率为_______。

15、已知集合M={ f (x)f(x)f(y)f(xy)f(xy),x,yR},有下列命题

22

1, x0

① 若f (x)= ,则f (x)M;②若f (x)=2x,则f (x)M;

-1, x﹤0

③f (x)M,则y= f (x)的图像关于原点对称;

④f (x)M,则对于任意实数x1,x2(x1x2),总有

f(x1)f(x2)﹤0成立。

x1x2其中所有正确命题的序号是_______。(写出所有正确命题的序号)

三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤

16、(12分)已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{ bn}的前3项。

(1)求{an}的通项公式;

(2)若{ bn}的前项和为Sn,求使得Sn﹤400的n的最大值。

17、(12分)已知锐角三角形ABC中,向量m(22sinB,cosBsinB),

n(1sinB,cosBsinB),且mn。

(1) 求角B的大小; (2)当函数y=2sin2A+cos(

18、(12分)某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60), [60,70), [70,80), [80,90), [90,100), 分别加以统计,得到如图所示的频率分布直方图。

C3A)取最大值时,判断三角形ABC的形状。 2

(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数:

(2) 若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”; “25周岁以下组”中日平均生产不足60件的称为“菜鸟”。此工厂有一个优良传统,要求1名“菜鸟”必须找一位“生产能手”组成“师徒组”。从样本中的“生产能手”和“菜鸟”中任意抽取2人,求2人恰好能组成“师徒组”的概率。

19、(12分)如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2 (1)求证:AD// B'D;

(2)求三棱锥A'-AB'D的体积。

20、(13分)已知函数f (x)=x+ax-2, (aR)

3

(l)若f (x)在区间(1, +)上是增函数,求实数a的取值范围;

f'((x)-a, x0

(2)若g(x)=

af'(x-1),x1

(3)若g(x)= ,且在R上是减函数,求实数a的取值范围。

1, x﹥1,且f(x0)=3,求x0的值。 x1, x﹥1 x

21、己知函数f (x)=e,xR

2

(1)求 f (x)的反函数图象上点(1,0)处的切线方程。 (2)证明:曲线y=f(x)与曲线y=

12xx1有唯一公共点; 2(3)设a﹤b,比较

f(a)f(b)f(b)f(a)与的大小,并说明理由。

2ba

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务