SWITCHING POWER SUPPLY SPECIFICATION
1. INPUT:
1.1 VOLTAGE: UNIVERSAL AC 90V-AC260V SINGLE PHASE. 1.2 FREQUENCY: 47Hz-63Hz. 1.3 RMS CURRENT: 2A Max.
1.4 INRUSH CURRENT: 30A Max. WHILE COLD START AT PEAK ON FULL LOAD, 25℃ AMBIENT. 1.5 EFFICIENCY: 70% Min. AT NOMINAL LINE INPUT, FULL LOAD.
2. OUTPUT:
2.1 DC OUTPUT: Voltage 15.0V MAX. Load 2.0A MIN. Load 0.1A Regulation +/- 5% Ripple & Noise 150mV NOTE: FOR RIPPLE & NOISE MEASUREMENT, USE A 20 MHz BANDWIDTH FREQUENCY OSCILLOSCOPE, AND ADD 0.1uF MULTILAYER CAPACITOR AND A 22uF ELECTROLYTIC CAPACITOR AT OUTPUT CONNETCTOR TERMINAL
3. TIME SEQUENCEE:
3.1 RISE TIME: 70mS Max. AT NOMINAL LINE VOLTAGE, FULL LOAD. 3.2 TURN-ON DELAY TIME: 1000mS Max. AT NOMINAL LINE VOLTAGE FULL LOAD.
3.3 HOLD-UP TIME: 20mS Min. AT 230Vac/50Hz INPUT, 16ms Min. AT 115Vac/60Hz INPUT. FOR OUTPUT, AT FULL LOAD 4. PROTECTION:
4.1 OVER VOLTAGE PROTECTION: OVP AT 110-140% 4.2 SHORT CIRCUIT PROTECTION:
THE OUTPUT WITHSTAND AN INDEFINITE SHORT CIRCUIT WITHOUT DAMAGE TO THE POWER SUPPLY 4.3 OVER POWER PROTECTION:
WHEN OUTPUT POWER EXCEEDS 110%-160% OF RATED LOAD, THE POWER SUPPLY WILL SHUT DOWN.
4.3 WHEN PROTECTION CIRCUIT IS WORKING, THE POWER SUPPLY WILL SHUT DOWN. ONCE THE ABNORMAL CONDITIONS ARE
REMOVED, THE POWER SUPPLY WILL RESTART AUTOMATICALLY.
5. SAFETY REQUIREMENT:
5.1 THIS POWER SUPPLY IS DESIGNED TO MEET FOLLOWING STANDARDS: 1) UL 1950.
2) CSA 22.2 NO. 0-M1982; BULLETIN 1402C. 3) IEC 950
5.2 DIELECTRIC WITHSTAND:
1) PRIMARY TO SECONDARY: 1500Vac FOR 1 MINUTEE. 2) PRIMARY TO SAFETY GROUND: 1500Vac FOR 1 MINUTE. 5.3 LEAKAGE CURRENT: 3.5mA Max. AT 245 Vac
6. CONDUCTED EMI REQUIREMENT:
1) FCC DOCKET 20780, PART 15, SUBPART J, CLASS B. 2) BZT Vfg 243/1991 CLASS B.
7. ENVIRONMENT:
7.1 OPERATING TEMPERATURE : 10℃TO 50℃.
7.2 OPERATING RELATIVE HUMIDITY: 20% TO 90%. 7.3 STORAGE TEMPERATURE : -20℃ TO 60℃. 7.4 STORAGE RELATIVE HUMIDITY: 10% TO 90%. 7.5 COOLING: SHOULD OPERATE WITHOUT FAN
FLYBACK DESIGN THEORY:
Considering Power MOSFET Vds stress is safe, and current level capacity is enough.
Decide turn ratio by Vds(stress)Vc(max)1.2(VoVf)N
The maximum duty D
Dmin(VoVf)NVin(max)Vds(on)(VoVf)NDmax(VoVf)NVin(min)Vds(on)(VoVf)N
Pout=1/2 Lp*Ipp2*f
Vinmin=Lp*Ipp*f/D
Ip=2*Pout/(Vinmin*Dmax)
Lp=VinminDmax/(Ipp*f)
DETERMINE DCM/CCM BOUNDARY IOB=Io(max)*(X% PERCENTAGE)
Vdc(BOUNDARY)=Vdc
DECIDE DUTY CYCLE AND CALCULATE TURN RATIO
NVdc(min)(VoVf)*Dmax1Dmax
WHERE N : TURN RATIO Np/Ns D(max) : MAX. DUTY CYCLE Vdc(min)=MIN. DC VOLTAGE Vo : OUTPUT VOLTAGE
Vf : DIODE FORWARD VOLTAGE DROP
IF N IS DECIDED, THEN RECKECK D(max)
DETERMINE SECONDARY PEAK CURRENT IN DCM/CCM
Dmax1DmaxN(VoVf)Vdc(min)
DECIDE SECONDARY WINDING INDUCTAANCE Ls
DECIDE PRIMARY WINDING INDUCTANCE Lp in CCM
For energy transfer,
And,
12Lp(IpIb)fs22
Ls(VoVf)(1Dmax)TsISB
Po
IbIpIIp(1Krp)
PoTherefore,
Lp2Ip(1Krp2*(1/Krp)
)fs
2
Lp = NLs
DETERMINE SECONDARY PEAK CURRENT IN CCM
Ip_avgPoVmin*Ip_avgN
Is_avg
IIpeak
Wave form factor Krp :
Peak current Ipeak (Ip):
Ripple current ΔI:
RMS current Irms:
IrmsIpDmax(Krp32Krp
IavgDmaxIavgDmax
Ipeak22Krp
I2(Ip)
Krp1)
Bac =Krp * Bmax
Io(max)Is(2IsIsB)*(1Dmax)2Io(max)IsB2IsB2IppIspN
1DmaxIo(max)1Dmax
IspIsBIsDETERMINE PRIMARY PEAK CURRENT IN CCM
Loss allocation factor Z
PoZ=0.5~0.7
PoZ(1)12LpIpk2
fs
CALCULATE APPARENT POWER
PtPo
DECIDE CORE SIZE
(1+K) Bmax + Br < Bsat
Ac*Ae=(25.32*Lp*Ipp*d*d)/Bmax
Set K=0.2; Bac=0.5*Bsat
ApWaAcPt*1042BmFsJKu
2
2
WHERE Wa : WINDOW AREA, cm
Ae : EFFECTIVE CROSS-SECTIONAL AREA, cm Ku : WINDING FACTOR, 0.2-0.5
2
J : CURRENT DENSITY, A/cm
Fs : OPERATING FREQUENCY, Hz
Bm : Magnetic flux density , T
Pt : total power including output and input power
CALCULATEE PRIMARY TURNS Np:
DETERMINE AIR GAP
LgLe1NpVminDmaxBacAefsLpIBAeLpIpeakBmaxAe
LgoNp2AeLp1Ler
effr
CALCULATTE SECONDARY TURNS Ns
NsNpN
CALCULATE AUXILIARY WINDING TURNS NA
VaVoVfNs(VOLTS/TURN)NA*VaVccVf1NAVccvF1Va
DETERMINE WINDING WIRE SIZE
AwIrmsJIrms14
2
2
WHERE Aw : WIRE AREA; cm
0.33DESIGN THEORY
CONSIDER DRAIN-SOURCE BREAKDOWN VOLTAGE BVDSS (COLLECTOR-EMITTER BREAKDOWN VOLTAGE BVceo)
BVDSS (BVceo) > Vdc(max) + N(Vo+Vf)
CONSIDER CONTINUOUS DRAIN CURRENT ID (D.C. COLLECTOR CURRENT Ic)
CONSIDER PULSED DRAIN CURRENT IDM(PEAK COLLECTOR CURRENT Ic(peak))
CONSIDER MOSFET STATIC DRAIN-SOURCE ON-STATE RESISTANCE RDS(ON) [TRANSISTORR COLLECTOR SATURATION VOLTAGE Vce(sat)]
IDM[Ic(peak)]IppIo(max)IOBN(1Dmax)
ID(Ic)DmaxIo(max)N(1Dmax)
DESIGN THEORY
CONSIDER REPETITIVE PEAK REVERSE VOLTAGE VRRM
CONSIDER AVERAGE OUTPUT RECTIFIED CURRENT Io(avg)
Io(avg) > Io(max)
CONSIDER NON-REPETITIVE PEAK SURGE CURRENT IFSM
IFSMIspIo(max)IOB1Dmax
Vdc(max)VRRMVoN
DESIGN THEORY
CALCULATE OUTPUT CAPACITANC
CHOOSE CAPACITOR RATED VOLTAGE W.V. > 1.2*Vo CALCULATE R.M.S. RIPPLE CURRENT
CALCULATE E.S.R. OF CAPACITOR
ESR(max)VoIspVo(1Dmax)Io(MIN)IOBVoDmaxTsVoRL(min)Io(max)DmaxTsVo
Co
Iripple(rms)VoRL(min)Dmax1DmaxRL(min)Ts1Dmax12LsDmax2
FLYBACK DESIGN EXAMPLE
[DESIGN ENVIROMENT RATING]
CONDITION: Po=30W, EFF=0.7,P.F.=0.6, Vac(min)=90V Vin: Bmax Iin: D: Pout: Circuit Topology Transformer Electrical Diagram Minimum Working AC input Voltage VACMIN Volts Minimum Working DC input Voltage VDCMIN Volts Maximum Working AC input Voltage VACMAX Volts Maximum Working DC input Voltage VDCMAX Volts AC Mains Frequency Range FAC Hertz Bridge Rectifier Conduction Time Estimate TC mSeconds Input Bulk Filter Capacitor CIN uFarads PWM Switching Frequency Range FS Hertz Permit Maximum Operation Duty D % Voltage Regulation VR % Output Voltage VO(n) Volts Output Rectifier Diode Forward Voltage Drop VD Volts Output Current Io(n) Amperes Output Power Po(n) Watts Switch on-state Drain to Source Voltage VDS Volts Efficiency Estimate EFF % Loss Allocation Factor LAF Safety Class CLASS
[FUSE DESIGN SECTION]
Max. INPUT CURRENT
I(max)3090*0.7*0.61A0.794A
CHOOSEFUSE
BECAUSE THEE ADAPTOR IS UNIVERSAL INPUT
CHOOSE 250V VOLTAGE RATING FUSEE
IF THE MAX INRUSH CURRENT IS 12A, TIME DURATION IS 10mS,
THEN
22-3
[Iit] = (12) * (10 * 10) =1.44
IF WE CHOOSE 1A FUSE OF \"2AG FAST-ACTING\" TYPE, THEN FROM CURRENT-TIME CHART WE CAN GET THE CURRENT ABOUT 8A IN THE 10mS CONDITION. THEREFORE, THE ENERGY IS
22-3
[Iit] = (9) * (10 * 10) =0.81 BECAUSE [It] < [Iit], SO WE CAN NOT USE THIS TYPE FUSE.
CHOOSE ANOTHER 1A FUSE OF \"2AG SLOW-BLOW\" TYPE, THEN WE CAN GET THE CURRENT ABOUT 23A IN TTHE 10mS CONDITION. THEREFORE, THE ENERGY IS
22-3
[Iit] = (23) * (10 * 10) =5.29
2
2
IF THE THERMAL AGEING COEFFICIENT \"A\" IS 0.3, THEN
2
A[It] = 0.3 * 5.29 = 1.59 SO
22
A[It] > [Iit] WE CAN CHOOSE THIS TYPE FUSE.
[NTC DESIGN SECTION]
CONDITION : Po=30W, η=0.7, PF=0.6, Vac(spec) = 230V, Vac(min)=90V
ZERO POWER RESISTANCE RT
RT230V30A3090*0.7*0.67.7(OHM)
MAXIMUM PERMISSIBLE CURRENT IT
IT0.794A
THEREFORE, WE CHOOSE \"UEI\" NTC THERMISTORR \"N10SP010\ RT=10 (OHM) IT=3.0A
[RECTIFIER DESIGN SECTION]
MAX. DC BLOCKING VOLTAGE
V PIV2*2374MAX. AVERAGE FORWARD RECTIFIED OUTPUT CURRENT
IdiodePo12830128*0.7
0.334A
CHOOSE RS105 BRIDGE DIODE 1A/600V
[BULK CAPACITOR DESIGN SECTION]
CAP.VALUE
Cub(min)WinV2pkVmin2(30/0.7*60)(90*2)(75)22=67.6μF
RIPPLE CURRENT
Icin(rms)300.7*900.476A
WORKING VOLTAGE
W.Vcin(max)2*2373.3V
CHOOSE 68uF/400V RUBYCON USP SERIES
[VARISTOR DESIGN SECTION]
[X’FM DESIGN SECTION]
PRACTICAL DESIGN
WINDING AREA ALLOCATION FACTOR 1:3 Core Type Core Bobbin Type Bobbin Core Saturated Flux Density 100℃ BS Tesla Core Rest Flux Density 100℃ BR Tesla Core Effective Cross Sectional Area AE cm^2 Core Effective Path Length LE cm Core Volumn/Weight VC cm^3 Core Loss Density Pb Watts/cm^3 Ungapped Core Effective Inductance AL nH/T^2 Bobbin Effective Widing Area AC mm^2 Bobbin Physical Winding Width BW mm Safety Margin Width MW mm Frenquency Range F Hz ui He A/m
CHOOSE CORE MATERIAL
FERRITE----------Mn-Zn
EFFECTIVE SATURATION MAGNETIC FLUX DENSITY Bsat 5000 Gauss CHOOSE CORE MANUFACTORY AND FERRITE MATERIAL 1. TDK------PC30, PC40 2. THOMSON------B50 3. TOMITA------2E6 4. FUJI------H45
5. TOKIN------2500B, 2500B2 6. SIEMENS------N27, N67, N87
7. MAGNETICS------R, P, F MATERRIAL 8. FERROXCUBE------3B7, 3C8 9. SATCKPOLE------24B 10. INDIANA GENERAL------
11. NIPPON FERRITE------SB-5S, GP-5, GP-7 12. 川鐵------MB-3
13. HITACHI------SB7C, SB9C 14. PHILIPS------3C80, 3C85, 3F3
15. NIPPON CERAMIC------NC-1M, NC-2M 16. MITSUBISHI------NZ, NK, NA, NX 17. SAM HWA------SB-5S, GP-5, GP-7
CHOOSE CORE TYPE
1. EI TYPE 5. LP (FQK) TYPE 2. EE TYPE 6. RM TYPE 3. EER TYPEE 7. EPC TYPE
4. PQ TYPE 8 .ETD (EC) TYPE
CONDITION : Po=30W, Fs=40KHz,η=0.7,Vo=15V,Io=2A
DCM/CCM BOUNDARY
IOB = Io(min) = 65%*Io(max)
= 0.65*2 =1.3A
Vdc(BOUNDARY)=100Vdc
MAX. DUTY CYCLE AND TURN RATIO
ASSUME Dmax = 0.45
NVdc(min)(VoVf)*Dmax1Dmax100151*0.4510.455.11
CHOOSEN5
RECHECK D(max)
Dmax
1Dmax5*(151)100
Dmax0.44
IN DCM / CCM △IsB SECONDARY PEAK CURRENT
IsB2IOB1Dmax5*(151)100
Dmax0.44
Ip=2*Pout/Vinmin*Dmax Lp=Vinmin*Dmax/(Ipp*f) DECIDE Ls
LsVo15Vf1DmaxTsISB4.
110.441/40*103
48.28uHDECIDE Lp
Lp = NLs = (5)*48.28
=1.207mH
IN CCM △Isp SECONDARY PEAK CURRENT
22
IspIo(max)1Dmax210.44ISB24.2
5.AIN CCM △Ipp PRIMARY PEAK CURRENT
IppIspN5.51.178A
APPARENT POWER Pt
PtPoPo300.730
72.86W
CORE SIZE Ku =0.6
Ac*Ae=6.33*Lp*Ipp*d*d/Bmax/Ku
ApWaAcPt*104
2BmFsJKu72.86*1034
0.456cm420.240105000.2
PRIMARY TURNS Np
NpCHOOSE EER-28 JPP-4 FERRITE CORE, CORE DATA AS FOLLOWING : Ae: 85.4mm2 Ac:141.25mm2 Ve=6353.8mm3
Ac*Ae=1.206cm4
Lp*IppBmAc1.207*103*1.17840.2*1.18*10TURNS
60SECONDARY TURNS Ns
NsNpN60512TURNS
AUX. WINDING TURNS NA
VaNAVoVfNsVa151121.333VOLTS/TURNSVccVf11611.33312.75
CHOOSENA13TURNS
WINDING WIRE SIZE
AW(Np)IpJ(30/0.7)10025000.5500*15000.86*103cm2
AWG#22CHOOSEAW(Ns)Io(Ns)JIo(NA)JAWG#294*101*103cmcm2CHOOSECHOOSE
AW(NA)
32AWG#27[POWER MOSFET DESIGN SECTION]
DRAIN-SORCE BREAKDOWN VOLTAGEE BVDSS
BVDSS > Vdc(max) + N(Vo+Vf)=360+5*(15+1)=435V
CONTINUOUS DRAIN CURRENT ID
PULSED DRAIN CURRENT IDM
IDDmaxIo(max)N(1Dmax)0.44*25*(10.44)0.314A
IDMIppIo(max)IOBN(1Dmax)
21.35*(10.44)
1.18A
CHOOSE 2SK118 MOSFET (TOSHIBA), THE RATING ARE : BVDSS (VDSS) = 600V ID=6A
IDM (IDP) = 24A RDS(ON)=0.95(OHM)
[OUTPUT DIODE DESIGN SECTION]
REPETITIVE PEAK REVERSE VOLTAGE VRRM
AVERAGE OUTPUT REECTIFIED CURRENT Io(avg)
Io(avg) > Io(max) = 2A
NON-REPETITIVE PEAK SURGE CURRENT IFSM
IFSMIspIo(max)IOB1Dmax21.310.445.A
Vdc(max)VRRMVoN(3605)1587V
CHOOSE BYQ28-100 ULTRA FAST-RECOVERY DIODE (PHILIPS)
VRRM=100V Io(avg)=10A (TWO DIODE) IFSM=50A VFM=0.85V
[OUTPUT CAPACITOR DESIGN SECTION]
OUTPUT CAPACITANCE
CoIo(max)DmaxTsVo2*0.44*(1/40*10)0.153
147uF CHOOSE 2200uF
CAPACITOR RATED VOLTAGEE
W.V. > Vo = 15V
CHOOSE RATED VOLTAGE 25V
R.M.S. RIPPLE CURRENT
Iripple(rms)VoRL(min)157.50.44Dmax1DmaxRL(min)Ts1Dmax12LsDmax2
30.4410.44*7.5*1/40*10610.441248.28*102
2A
CHOOSE RUBYCON YXB SERIES CAPACITOR 2200uF/25V,
THE RIPPLE CURRENT IS
Iripple(rms)=1.6A (AT 105℃ ,100KHZ)
BUT IN 85℃ , 50KHZ, THE R.M.S. RIPPLE CURRENT IS
Iripple(rms)=1.6*1.7*0.=2.74A
WHICH CAN SATISFY THE ABOVE REQUIREMENT
E.S.R. OFF CAPACITOR
ESR(max)Vo(1Dmax)2Io(max)IOB0.15*(10.44)213
25.452200uF/16 ESR=29m (OHM)
CAN NOT SATISFY THE REQUIREMENT, MUST ADD ANOTHER LC FILTER
DECIDE Lc FILTER
ASSUME
12LfCf110Fs
IF CHOOSE Lf = 10uH, THEN
1
210*106*Cf110*40*103
Cf158.5uF
CHOOSE Cf = 1000uF / 16V
[OUTPUT REGULATION DESIGN SECTION] [OUTPUT PROTECTION DESIGN SECTION] [PWM CONTROLER IC DESIGN SECTION] [FEEDBACK LOOP GAIN DESIGN SECTION] [THERMAL DESIGN SECTION] [EMC FILTER DESIGN SECTION]
APPENDIX AWG Size 12 AWG 13 AWG 14 AWG 15 AWG 16 AWG 17 AWG 18 AWG 19 AWG 20 AWG 21 AWG 22 AWG 23 AWG 24 AWG 25 AWG 26 AWG 27 AWG 28 AWG 29 AWG 30 AWG 31 AWG 32 AWG 33 AWG 34 AWG 35 AWG 36 AWG 37 AWG 38 AWG 39 AWG 40 AWG mm mm Area A mps Amps Amps Amps Amps Amps Amps Amps (mm2) 3A/mm2 4A/mm2 5A/mm2 6A/mm2 7A/mm2 8A/mm2 9A/mm2 10A/mm2 2.052 2.052 3.3071 9.921 13.228 16.535 19.842 23.150 26.457 29.7 33.071 1.829 1.829 2.6273 7.882 10.509 13.137 15.7 18.391 21.019 23.6 26.273 1.928 1.928 2.9195 8.758 11.678 14.597 17.517 20.436 23.356 26.275 29.195 1.450 1.450 1.6513 4.954 6.605 8.256 9.908 11.559 13.210 14.862 16.513 1.291 1.291 1.3090 3.927 5.236 6.545 7.854 9.163 10.472 11.781 13.090 1.150 1.150 1.0387 3.116 4.155 5.193 6.232 7.271 8.310 9.348 10.387 1.024 1.024 0.8235 2.471 3.294 4.118 4.941 5.765 6.588 7.412 8.235 0.912 0.912 0.6533 1.960 2.613 3.266 3.920 4.573 5.226 5.879 6.533 0.813 0.813 0.5191 1.557 2.076 2.596 3.115 3.634 4.153 4.672 5.191 0.724 0.724 0.4117 1.235 1.7 2.058 2.470 2.882 3.293 3.705 4.117 0.3 0.3 0.3247 0.974 1.299 1.624 1.948 2.273 2.598 2.922 3.247 0.574 0.574 0.2588 0.776 1.035 1.294 1.553 1.811 2.070 2.329 2.588 0.511 0.511 0.2051 0.615 0.820 1.025 1.231 1.436 1.1 1.846 2.051 0.455 0.455 0.1626 0.488 0.650 0.813 0.976 1.138 1.301 1.463 1.626 0.404 0.404 0.1282 0.385 0.513 0.1 0.769 0.7 1.026 1.154 1.282 0.361 0.361 0.1024 0.307 0.409 0.512 0.614 0.716 0.819 0.921 1.024 0.320 0.320 0.0804 0.241 0.322 0.402 0.483 0.563 0.3 0.724 0.804 0.287 0.287 0.07 0.194 0.259 0.323 0.388 0.453 0.518 0.582 0.7 0.254 0.254 0.0507 0.152 0.203 0.253 0.304 0.355 0.405 0.456 0.507 0.226 0.226 0.0401 0.120 0.160 0.201 0.241 0.281 0.321 0.361 0.401 0.203 0.203 0.0324 0.097 0.129 0.162 0.194 0.227 0.259 0.291 0.324 0.180 0.180 0.0254 0.076 0.102 0.127 0.153 0.178 0.204 0.229 0.254 0.160 0.160 0.0201 0.060 0.080 0.101 0.121 0.141 0.161 0.181 0.201 0.142 0.142 0.0158 0.048 0.063 0.079 0.095 0.111 0.127 0.143 0.158 0.127 0.127 0.0127 0.038 0.051 0.063 0.076 0.0 0.101 0.114 0.127 0.114 0.114 0.0102 0.031 0.041 0.051 0.061 0.071 0.082 0.092 0.102 0.102 0.102 0.0082 0.025 0.033 0.041 0.049 0.057 0.065 0.074 0.082 0.0 0.0 0.0062 0.019 0.025 0.031 0.037 0.044 0.050 0.056 0.062 0.079 0.079 0.0049 0.015 0.020 0.025 0.029 0.034 0.039 0.044 0.049 附件1
附件2
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务