bud,dwa,annn,ingrid@csse.monash.edu.au
SchoolofComputerScienceandSoftwareEngineering,MonashUniversity
Clayton,Victoria3800,AUSTRALIA
phone:+6139905-5225Abstract
Makingdecisionsunderuncertaintyremainsacen-tralprobleminAIresearch.Unfortunately,most
uncertainreal-worldproblemsaresocomplexthatprogressinthemisextremelydifficult.Gamesmodelsomeelementsoftherealworld,andofferamorecontrolledenvironmentforexploringmeth-odsfordealingwithuncertainty.Chessandchess-likegameshavelongbeenusedasastrategical-lycomplextest-bedforgeneralAIresearch,andweextendthattraditionbyintroducinganimper-fectinformationvariantofchesswithsomeusefulpropertiessuchastheabilitytoscaletheamountofuncertaintyinthegame.Wediscussthecomplex-ityofthisgamewhichwecallinvisiblechess,andpresentresultsoutliningthebasicgame.Wemo-tivateanddescribetheimplementationandappli-cationoftwoinformation-theoreticadvisors,anddescribeourdecision-theoreticapproachtocom-biningtheseinformation-theoreticadvisorswithabasicstrategicadvisor.Finallywediscusspromis-ingpreliminaryresultsthatwehaveobtainedwiththeseadvisors.
1Introduction
Gamesandgametheorymodelsomepropertiesofreal-worldsituationsandthereforeallowanalysisandempiricaltestingofdecision-makingstrategiesinthesedomains.Inthisca-pacity,gameshavelongbeenusedasatestbedforgeneralAIresearchandideas.Inparticular,chesshasalonghistoryofusebecauseofitsstrategiccomplexity,andwell-studiedandunderstoodproperties.
Despitetheseadvantages,chesshastwosignificantdraw-backsasageneralAItestbed:thefirstisthesuccessofcomputerchessplayersthatusehard-coded,domainspecificrulesandstrategiestoplay;andthesecondisthefactthatstandardchessisaperfectinformationdomain.Anumberofresearchershavetackledthefirstofthesedrawbacks.ForexampleBerliner[2]investigatedgeneralisedstrategiesusedinchessplayasamodelforproblemsolving,andPell[16]introducedmetagamer—asystemforplayinggamesarbi-trarilygeneratedfromasetofgamesknownasSymmetricChess-Likegames(SCLGames).
Inthispaper,weaddresstheseconddrawbackofchessasageneralAItestbed—thatofperfectinformation.Wede-scribeamissing(orimperfect)informationvariantofstan-dardchesswhichwecallinvisiblechess[4].Invisiblechess
fax:+6139905-5146
consistsofaconfigurablenumberofinvisiblepieces,i.e.,piecesthataplayer’sopponentcannotsee,andisthusarep-resentativeofthegeneralclassofstrategicallycomplex,im-perfectinformation,twoplayer,zero-sumgames.
Manyresearchershaveinvestigatedgameswithmissingin-formationincludingpoker([7],[14],[13]),bridge([10],[12],[21]),andmulti-userdomains[1].WiththeexceptionofAlbrechtetal.[1],whousealargeuncontrollabledomain,allofthesedomainsarestrategicallysimplegivenperfectinformation.Invisiblechessretainsthestrategiccomplexi-tyofstandardchesswiththeadditionofacontrollableel-ementofmissinginformation.Invisiblechessisrelatedtokriegspiel([15]and[5]),achessvariantinwhichalltheopponent’spiecesareinvisibleandathirdpartyrefereede-termineswhetherornoteachmoveisvalid.
Theremainderofthepaperisorganisedasfollows.Sec-tion2discussessomerelatedwork.Sections3and4outlinethegameandourbasicapproachtoinvisiblechess.Sec-tion5presentsabriefanalysisofplaywithvariousinvis-iblepieces.Interestingly,weshowthattherelativevaluesofminorinvisiblepiecesdiffersfromstandardchesspiecerankings.Section6discussestherelationshipbetweenun-certaintyandtheinformation-theoreticconceptofentropy,andtheapplicationofentropytoourresults.Section6alsomotivatesthedesignofinformation-theoreticadvisors,de-scribestheseadvisorsandpresentspreliminaryresultsthatdemonstratetheefficacyofourapproach.Finally,Section7containsconclusionsandideasforfurtherwork.
2RelatedWork
Sincethe1950s,whenShannonandTuringdesignedthefirstchessplayingprograms[19],computershavebe-comebetteratplayingcertaingamessuchaschessus-inglargeamountsofhand-codeddomainspecificinforma-tion.Inanswertothesuccessofhard-codedalgorithms,Pell[16]introducedaclassofgamesknownasSymmetricChessLike(SCL)Games,andasystemcalledMetagamerthatplaysgamesarbitrarilygeneratedfromthisclassusingasetofadvisorsrepresentingstrategiesintheclassofgames.Pelldidnotconsiderimperfectinformationgames.Invisi-blechessisonegameintheextensionofPell’sclassofSCLGamestotheclassofInvisibleSCLGames,whereoneormoreofaplayer’spiecesishiddenfromtheiropponent.Kolleretal.[13]investigatedsimpleimperfectinformationgameswithagoalofsolvingthem.However,theirapproachdoesnotscaleuptocomplexgamessuchasinvisiblechess.
Smithetal.[21]wroteabridgeplayingprogramusingamodifiedformofgametreewithenumeratedstrategiesratherthanactions,effectingaformofforwardpruningofthegametree.Smithetal.statedthatforwardpruningworkswellforbridge,butnotforchess.Ginsberg[11]introducedparti-tionsearchtoreducetheeffectivesizeofthegametree.Heshowedthatthisapproachworkswellforbridgeandothergameswithahighdegreeofsymmetry.Inbridge,theor-derinwhichthefirstcardsareplayedisirrelevantifthesamecardsremainineachplayer’shands.However,inchess,partlybecausepawnsonlymoveforward,andpartlybecausetheorderofmovesininvisiblechesschangestheflowofthegame,thesamepositionsdonottendtooccurinasignific-antnumberofnodesinthegametree,andthereforepartitionsearchisnotlikelytobeveryeffectiveonchessvariants.MorerecentlyGinsberg[12]includedMonteCarlometh-odstosimulatemanypossibleoutcomes,choosingtheactionwiththehighestexpectedutilityoverthesimulations.Gins-bergclaimsthattryingtogleanorhideinformationfromanopponentisprobablynotusefulforbridge.Incontrast,wepresentresultsthatshowthatbothinformationhidingandgleaningcanbeusefulininvisiblechess.
FrankandBasin([9]and[8])haveperformedadetailedin-vestigationofsearchinimperfectinformationgames,con-centratingalmostexclusivelyonbridge.TheyfocusonanumberofsearchtechniquesincludingflatteningthegametreewhichtheyhaveshowntobeanNP-Completeproblem,andMonteCarlomethods.TheirinvestigationsuggeststhatMonteCarlomethodsarenotappropriateforimperfectin-formationgames.Thisproblemisexacerbatedininvisiblechessgiventherelativelackofsymmetryandthesizeofthegametree.
Ciancarinietal.[5]consideredkingandpawnendgamesinthegameofkriegspiel—anexistingchessvariantwhereneitherplayercanseetheopponent’spiecesormoves.Theyusedagame-theoreticapproachinvolvingsubstantiveratio-nalityandhaveshownpromisingresultsinthistrivialversionofkriegspiel.Thusfartheyhavenotappliedtheirapproachtoacompletegameofkriegspiel.Kriegspieldiffersfrominvis-iblechessinanumberofimportantareas.Alltheopponent’spiecesareinvisibletoaplayerofkriegspiel.Thusthereisnowaytoreducetheuncertaintyinthedomainwithoutreduc-ingthestrategiccomplexity.Bycontrast,ininvisiblechess,thenumberandtypesofinvisiblepiecesisconfigurable.Ad-ditionally,inkriegspiel,aplayerattemptsmovesuntilalegalmoveisperformed;athirdpartyarbitratorindicateswhetherornoteachmoveislegal.Ininvisiblechess,theplayerisgiv-enspecificinformationwhenamoveisimpossibleorillegal,andmaymissaturnasaresultofattemptinganimpossi-blemove(seeSection3).Thesedifferencesmakekriegspielasubstantiallymorecomplexandlesscontrollabledomainthaninvisiblechess.Specifically,exploringtherelationshipbetweenuncertaintyandstrategicplaywouldbemorediffi-cultinkriegspiel.Ultimately,thepathologicalcaseofinvisi-blechesswhereallpiecesareinvisibleapproachesthecom-plexityofkriegspiel.Thusinvisiblechessprovidesaconve-nientsteppingstonetoamuchmoredifficultproblem.1
8
7
6
5
4
3
2
1
abcdefghFigure1:Animpossiblemove.Theblackbishoponb2isinvisible.Whiteattemptsanimpossiblemovebytryingtomovethebishoponc1toa3.
abilityofoccupation,thentheaverageapproximatebranch-ingfactorofthatgameofinvisiblechessis.Forthreeinvisiblepieceseach,theboardandmoving.Assumingforapproximatelythatthethebranchinginvisiblefactorhalfthepiecesisaround
game,arethenon
thecompleteexpandedgametreeforthreeinvisiblepieces
eachisintheorderof
()nodes.Tomakethedomainevenmorecomplex,chesshasvirtuallynoaxesofsymmetrythatallowthesizeofthegametreetobereducedasinhighlysymmetricalgamessuchastic-tac-toe,andSmithandNau[20]claimthatforwardpruningtoreducethebranchingfactorofchesshasbeenshowntoberelativelyineffective.
Inadditiontodealingwiththecombinatoriallyexpansivena-tureoftheinvisiblechessgametree,aplayermustmain-tainbeliefsaboutthepositionsoftheopponent’sinvisiblepieces.Aplayerthatusesanybeliefupdatingschemethatdoesnottakeintoaccounteverypossibledestinationsquarewhenaninvisiblepieceismoved,willloseimportantinfor-mationabouttheflowofthegame.
Assumingnostrategicknowledge(i.e.,eachsquarethataninvisiblepiececanmovetoisaslikelytobevisitedasanyother),andonlyoneinvisiblepiece,aplayercaneasilymain-taintheprecisedistributionforthatpiece(see[3]).However,formultipleinvisiblepieces,thepositionsofinvisiblepiecesarenotconditionallyindependentwithrespecttoeachother.Theprobabilityofoneinvisiblepieceoccupyinganypartic-ularsquareaffectstheprobabilityofanotherinvisiblepieceoccupyingthatsquare.Maintainingtheprobabilitydistribu-tionsofmultipleinvisiblepiecesinvolvescombinatorialcal-culationsinthenumberofinvisiblepiecesorthestorageofcombinatoriallylargeamountsofdatatomaintainthecom-pletejointdistributionsofallinvisiblepiecesovertheentirechessboard.
4BasicDesign
Tocopewiththecombinatorialexplosion,andthestrategiccomplexityofinvisiblechess,weemploya“divideandcon-
8
7
6
5
4
3
2
1
abcdefgh
Figure2:Anillegalmove.Whiteisin
checkfromtheblackbishopona5,andat-temptstocapturetheinvisibleblackknightonf1whereitwouldbeincheckfromtheinvisibleblackbishoponc4.
quer”approach.Wesplittheproblemofchoosingthenextmoveintoanumberofsimplersub-problems,andthenuseutilitytheory[17]torecombinethecalculationsperformedforthesesub-problemsintoamove.Weuseinformation-theoreticideas[18]todealwiththeuncertaintyinthedo-main,andstandardchessreasoningtodealwiththestrategicelements.
Thismodular,hybridapproachisimplementedwithadvi-sorsorexpertsconnectedandcontrolledbyaGameCon-trollerandDistributionMaintenanceModule(GCDMM),andaMaximiser.TheGCDMMcontrolsthegamestate,hasknowledgeofthepositionsofallinvisiblepiecesandmain-tainsdistributionsofinvisiblepiecesonbehalfofthetwoplayers.TheGCDMMisresponsiblefordecidingwhetheramoveislegal,impossibleorillegalandensuringthatthegameprogressescorrectly.Whenitisaplayer’sturntomove,theGCDMMrequeststhenextmovefromtheMaximiserforthatplayer.TheMaximiser,responsibleforchoosingthebestmovesuggestedbytheavailableadvisors,generatesallpossi-bleboardsandallpossiblemoves,andrequestsutilityvaluesfromeachoftheadvisorsforeachmove.
Eachadvisorevaluatesthepossiblemoves,acrossasmanyboardsaspossibleintheavailabletime,accordingtoanin-ternalevaluationfunction.Thestrategicadvisor,amodifiedversionofGNUChess,returnsallpossiblemovesandtheirExpectedUtilities(EU)fromastrategicperspective.2TheEUforeachmoveoraction()iscalculatedbymultiply-ingitsutilityvaluebytheprobabilityofthegamestate()forwhichtheutilityvaluewascalculated,andsummingthisacrossallpossiblegamestates()asfollows.
(1)
TheMaximisermultipliesthevaluereturnedfromeachofthe
1N1Q2NN.I.1B
61.0
35.0
41.5
.8
39.053.413.227.61R
46.6
38.2
34.4
93.065.061.843.847.62B
86.8
56.2
72.0
95.658.565.628.045.82R
72.4
52.4
54.2
98.2
10.2
7.0
4.4
1.83
Thatendedinawin.Drawngamesarediscarded.Theyarelargelytheresultofrepeatingmovescontinuously,andconsistoflessthan10%ofgamesplayed.
1 Invisible Black Bishop versus 2 Invisible White Bishops - White Wins
160
Black’s UncertaintyWhite’s Uncertainty
140
em120
aG eht r100
evo demm80
uS yport60
nE latoT40
20
0
020406080100120140160180200
Number of Games
Figure3:Uncertainty(asentropy)ingameswithoneinvisi-bleblackbishopagainsttwoinvisiblewhitebishopsthatwerewonbywhite.
discusssomepreliminaryresultsobtainedwiththeseadvi-sors(Section6.3).
6.1UncertaintyandEntropy
Anyprobabilitydistributioncanbesaidtohaveanentropyorinformationmeasureassociatedwithit.Thisentropymea-sureisboundedfrombelowbyzero,whenthereisonlyonepossibilityandthereforenouncertainty,andincreasesasthedistributionspreads.
Ininvisiblechess,givenaprobabilitydistributionofthepo-sitionsoftheopponent’sinvisiblepieces,itispossibletode-riveaprobabilitydistributionofallpossibleboardpositions.Thuswecancalculatetheentropy()ofasetofboardstatestogetherwiththeirassociatedprobabilitiesasfollows:
(2)
whererepresentsasinglegamestate(onepossiblecombi-nationofpositionsoftheopponent’sinvisiblepieces),fromthesetofpossiblegamestates(),andrepresentstheprobabilityofthatgamestate.Asinvisiblepiecesmove,thenumberofsquarestheymayoccupyincreases.Thisleadstoanincreaseinthenumberofpossibleboardstates,andtheentropyofthedistributionofthoseboardstates,i.e.,itincreasestheopponent’suncertainty.
Figure3showstheentropyingamesthatwerewonbywhiteplayingwithtwoinvisiblebishopsagainstblackwithonein-visiblebishop.Thesolidlineshowsblackstotalentropy(theentropyofthedistributionofthepositionsofwhite’sinvisiblepieces)summedoverthecourseofthegame,sortedbyen-tropy.Thedashedlineshowswhite’stotalentropyovereachcorrespondinggame.Ofthe190gameswonbywhite,onlyonegame(number86)showsgreaterentropyforblack.Thisisnotthecaseforgamesthatwerewonbyblack.Thisex-amplecorroboratesourintuitionthatmorecertainplayersaremorelikelytowin,andunderpinsourinformation-theoreticadvisors.
6.2Information-TheoreticAdvisors
MoveHideAdvisor.Workingonthepremisethatthemoreuncertaintheopponentis,theworsetheywillplay,themovehideadvisoradvisesaplayertoperformmovesthathidein-formationfromtheopponent.Thatis,eachmoveisscored
Weight
Seek
BvsB
BvsB57.2
50.1
5.0
82.7
51.2
13.6
47.
Theresultsinthesecolumnweregeneratedwithanoldver-sionoftheprogramwhichdidnotcalculatethevalueofimpossiblemovescorrectly.However,thepartialresultsthathavebeengen-eratedforthesecolumnswiththenewprogramfollowedthesametrendsastheresultspresentedhere.
visoronly,againstanopponentusingoneoftheinformation-theoreticadvisorsandthestrategicadvisor.
Table2showstheresultsofaddingthemovehideormoveseekadvisortoaninvisiblequeeneach(QvsQ)andaninvis-iblebishopeach(BvsB).Thefirstcolumnheaded“Weight”showstheweightoftheinformation-theoreticadvisorrela-tivetothestrategicadvisor.Thus,withaweightof0.5,ingamesplayedwithaninvisiblequeeneach,theplayerplay-ingwiththemovehideadvisorwon57.2%ofthegames.MoveHideResults.Themovehideadvisorprovedtobeasignificantadvantage.Infactthewinpercentagewithaweightof5.0fortheinvisiblebishopgameswas82.7%whichisapproachingthewinpercentageofaninvisiblebish-opagainstnoinvisiblepieces(.8%).
Thisimprovementisduetotheincreasednumberofinvis-iblepiecemoves.Withasmallincreaseinthevalueofmovesofinvisiblepieces,strategicallyreasonableinvisiblepiecemovesaregreatlyencouraged.Thistendstomaximisetheopponent’suncertainty.However,astheweightofthemovehideadvisorincreasespast5.0,thepercentageofwin-sdecreases.Thisbehaviouristypicalofallobservedmovehideruns,andresultsfromtheplayerperforminghighlyval-uedmovehidemovesattheexpenseofstrategy.Althoughtheopponentmaybeslightlymoreuncertainwhenthemovehideadvisorisweightedhighly,theplayerismakingenoughstrategicallypoormovestocounterthatadvantage.MoveSeekResults.Table2(columns5&6)showsthemoveseekadvisor’seffectivenessagainstanopponent’sin-visiblepieces.Withtheappropriateweight,themoveseekadvisordoesincreasetheplayer’swinpercentagebyaround5%.However,forweightsgreaterthanorsmallerthanthesevalues,themoveseekadvisoriseitherineffectiveordetri-mental.
Movesthattraversesquareswithapositiveprobabilityofoc-cupationbytheopponent’sinvisiblepiecesarevaluedbythemoveseekadvisor.Thesemovesmaynotcorrespondtogoodstrategicmoves.Thus,thehigherthemoveseekadvisor’sweight,thefewergoodstrategicmoveswillbeperformed.Thedifferencebetweenthebishop-seekingandqueen-seekingbehaviourisrelatedtothedifficultyoffindingtheopponent’sinvisiblepiece.Aninvisiblebishopcanhaveapositiveprobabilityofoccupyingatmosthalftheavailablesquares,whileaninvisiblequeencanhaveapositiveprob-abilityofoccupyingallavailablesquares.Thus,theadviceprovidedbythemoveseekadvisoroftenaidsintheearlycaptureoftheinvisiblebishop,therebyremovingtheuncer-taintyfromthegame.Incontrast,followingthisadvicewhentheinvisiblepieceisaninvisiblequeenleadstonon-strategicmoves.Thusthemoveseekadvisorassistswhentheuncer-taintyinthegameislow,butmaybeuselessordetrimentalwhentheuncertaintyishigh.
7ConclusionandFutureWork
Theresultspresentedinthispaperarepreliminaryandfur-therexplorationofthedomainisrequired.Specifically,moreaccuratepredictionofthelikelypositioningoftheoppon-ent’sinvisiblepiecesisneeded.Thispredictioncouldtaketheformofusingstrategicinformationaboutthelikelydesti-nationofamovinginvisiblepiece,orinvolveevaluatingthecompletesearchtreeformoreply.Improvingthisdistribu-
tionwouldreduceitsentropyandthereforeimprovestrategicperformance.Asideeffectofthistypeofdistributionim-provementisthepossibilityofincorporatingbluffingintoin-visiblechess,i.e.,movinganinvisiblepiecetoanunlikelypositiontoconfuseanopponent.
Modellingtheuncertaintyregardingaplayer’spiecesfromtheopponent’sperspectiveformoreplywouldimprovestrat-egicperformance.However,theproblemofthecombinatori-alexpansioninthesearchrequiredasaresultofthispredic-tionneedstoberesolved.Obtainingresultsinthisdomainisalreadyatimeconsumingexerciseandtheadditionofanex-tralayerofsearchwouldmakerapidgameplayimpractical.Themostobviouswaytomanagethisexplosionistofindef-fectivewaystoprunethegametree.However,asmentionedearlier,thisisnotlikelytobesimple.
Onesignificantdifficultyofthistypeofapproachistheprob-lemofhowtochoosetherelativeadvisorweights.Itislike-lythatplaymaybeimprovedbyusingstatisticalinferencetechniquessuchasthosedescribedin[6]todeterminestat-icweightsfortheadvisors.However,ourresultsshowthattheadvisorshavedifferentlevelsofeffectivenessindiffer-entsituations.Thusifaplayercaninferwhattypeofboardpositionthecurrentsituationis,theycanapplyanappropri-ateweightvectortotheiradvisorarray.Thetypeofcurrentboardsituationmaybebasedontheamountofentropyandthepiecesthatarecausingit,thegamemovenumber,andotherpositionalinformation.Weintendtousestatisticalin-ferencetechniquestoexplorethispossibility.
Insummary,wehavepresentedanddiscussedacomplex,butcontrolleddomainforexploringautomatedreasoninginanuncertainenvironmentwithahighdegreeofstrategiccomplexity.Wehavemotivatedandintroducedtheuseofinformation-theoreticadvisorsinthestrategicallycompleximperfectinformationdomainofinvisiblechess.Wehaveshownthatourdistributed-advisorapproachusingacombi-nationofinformation-theoreticandstrategicaspectsofthedomainleadtoperformanceadvantagescomparedtousingstrategicexpertisealone.Giventhesimplicityandgeneralityofthisapproach,ourresultspointtowardsthepotentialap-plicabilitytoarangeofstrategicallycompleximperfectin-formationdomains.
Althoughthebasicideaofinformation-theoreticadvisorsisintuitive,theirapplicationtothisdomainisnotnecessarilystraightforward.Therearecomplexmulti-levelinteractionsbetweenthestrategicadvisorandtheinformation-theoreticadvisors.Thebalancingactrequiredtomaximiseaplayer’sperformancealmostcertainlyinvolvesdynamicallymodify-ingtheweightsassociatedwiththevariousadvisorsdepend-ingonboththeinvisiblepiececonfigurationandthegameposition.However,thepreliminaryresultspresentedinthispaperindicatethatthisisadomainworthexploringfurther.
Acknowledgements
TheauthorswouldliketothankChrisWallaceforhisinsight,adviceandpatience.
References
[1]DWAlbrecht,IZukerman,AENicholson,andABud.To-wardsabayesianmodelforkeyholeplanrecognitioninlarge
domains.InUserModelling.Proc.ofthe6thInt.Conf.UM97,number383inCISMCoursesandLectures,pages365–376.SpringerWien,NewYorkNYUSA,1997.
[2]HansJ.Berliner.ChessasProblemSolving.PhDthesis,CarnegieMellonUniversity,Pittsburgh,PA,1974.
[3]
A.Bud,I.Zukerman,D.Albrecht,andA.Nicholson.Invisiblechess:Rules,complexityandimplementation.TechnicalRe-portforthcoming,SchoolofComputerScienceandSoftwareEngineering,MonashUniversity,2000.
[4]
A.E.Bud,A.E.Nicholson,I.Zukerman,andD.W.Albrecht.Ahybridarchitectureforstrategicallycompleximperfectin-formationgames.InProc.ofthe3rdInt.Conf.onKnowledge-BasedIntelligentInformationEngineeringSystems.,pages42–45.IEEEPress,1999.
[5]
P.Ciancarini,F.DallaLibera,andF.Maran.DecisionMak-ingunderUncertainty:ARationalApproachtoKriegspiel.InJ.vandenHerikandJ.Uiterwijk,editors,AdvancesinCom-puterChess8,pages277–298.Univ.ofRulimburg,1997.[6]
GFarrandDPowell.Unsupervisedlearninginmetagame.InNFoo,editor,Proc.ofthe12thAustralianJointConferenceonAI(AI’99),number1747inLectureNotesinAI,subseriesofLectureNotesinComputerScience,pages24–35.Springer-Verlag,December1999.
[7]NicholasV.Findler.Studiesinmachinecognitionusingthegameofpoker.CommunicationsoftheACM,20(4):230–245,April1977.
[8]I.FrankandD.Basin.Atheoreticalandempiricalinvestiga-tionofsearchinimperfectinformationgames.InTheoreticalComputerScience—Toappear.,2000.
[9]IanFrankandDavidBasin.Searchingameswithincompleteinformation:Acasestudyusingbridgecardplay.ArtificialIntelligence,100:87–123,April1998.[10]
Bj¨ornGamb¨ack,MannyRayner,andBarneyPell.Anar-chitectureforasophisticatedmechanicalBridgeplayer.InDavidN.LevyandDonF.Beal,editors,HeuristicPro-gramminginArtificialIntelligence—TheSecondComputerOlympiad2,pages87–107,Chichester,England,1991.EllisHorwood.
[11]MattGinsberg.Partitionsearch.InProc.ofthe13thNationalConf.onArtificialIntelligence,pages228–233.AAAIPress/MITPress,1996.
[12]MattGinsberg.GIB:stepstowardanexpert-levelbridge-playingprogram.InProc.ofthe16thInt.JointConf.onAI,pages584–5.MorganKaufmann,1999.
[13]DaphneKollerandAviPfeffer.Representationsandsolu-tionsforgame-theoreticproblems.ArtificialIntelligence,94(1):167–215,1997.
[14]
KBKorb,AENicholson,andNJitnah.Bayesianpoker.InKBLaskeyandHPrade,editors,Proc.ofthe15thConf.onUncertaintyinAI,pages343–350,Stockholm,Sweden,Au-gust1999.MorganKaufmann.
[15]DLi.Kriegspiel:ChessUnderUncertainty.PremierPublish-ing,1994.
[16]BarneyPell.StrategyGenerationandEvaluationforMeta-GamePlaying.PhDthesis,UniversityofCambridge,1993.[17]HowardRaiffa.Decisionanalysis:introductorylecturesonchoicesunderuncertainty.Addison-Wesley,1968.[18]Alfr´edR´enyi.Adiaryoninformationtheory.JohnWiley,1984.
[19]StuartRussellandPeterNorvig.ArtificialIntelligence:AModernApproach.PrenticeHall,1995.
[20]
S.J.J.SmithandD.S.Nau.Strategicplanningforimperfect-informationgames.InGames:PlanningandLearning,Pa-persfromthe1993FallSymposium,pages84–91.AAAIPress,1993.
[21]
S.J.J.Smith,D.S.Nau,andT.A.Throop.Total-ordermulti-agenttask-networkplanningforcontractbridge.InProc.ofthe13thNationalConf.onAI,pages108–113.AAAIPress/MITPress,1996.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务