k=1; eg=e;while (eg>=n) //破圈,直到边数e=n-1.
{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边 }//while }//算法结束。
connect()是测试图是否连通的函数,可用图的遍历实现,
2、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。 当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。 设当n=m-1时结论成立,现证明当n=m时结论成立。
设中序序列为S1,S2,„,Sm,后序序列是P1,P2,„,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,„,Si-1是左子树的中序序列,而Si+1,Si+2,„,Sm是右子树的中序序列。
若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,„,Sm}和{P1,P2,„,Pm-1}可以唯一确定右子树,从而也确定了二叉树。
若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,„,Sm-1}和{P1,P2,„,Pm-1}唯一确定左子树,从而也确定了二叉树。
最后,当13、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100 typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE; char pred[MAX],inod[MAX]; main(int argc,int **argv) { TNODE *root; if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(inod,argv[2]); root=restore(pred,inod,strlen(pred)); postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n) { TNODE *ptr; char *rpos; int k; if(n<=0) return NULL; ptr->info=(1)_______;
for((2)_______ ; rposptr->llink=restore(ppos+1, (4)_______,k );ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k); return ptr; }
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info); }
4、给出折半查找的递归算法,并给出算法时间复杂度性分析。 5、编程实现单链表的就地逆置。
23.在数组 A[1..n]中有n个数据,试建立一个带有头结点的循环链表,头指针为h,要求链中数据从小到大排列,重复的数据在链中只保存一个.
6、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)
7、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)下面所示的序列中哪些是合法的?
A. IOIIOIOO B. IOOIOIIO C. IIIOIOIO D. IIIOOIOO
(2)通过对(1)的分析,写出一个算法,判定所给的操作序列是否合法。若合法,返回true,否则返回false(假定被判定的操作序列已存入一维数组中)。 8、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有
向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)
有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。
void Print(int v,int start ) //输出从顶点start开始的回路。
{for(i=1;i<=n;i++)
if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。 {printf(“%d”,v);
if(i==start) printf(“\\n”); else Print(i,start);break;}//if }//Print void dfs(int v) {visited[v]=1;
for(j=1;j<=n;j++ )
if (g[v][j]!=0) //存在边(v,j)
if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if else {cycle=1; Print(j,j);} visited[v]=2; }//dfs
void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。 {for (i=1;i<=n;i++) visited[i]=0;
for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i); }//find_cycle
9、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分) 10、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。 #include typedef char datatype; typedef struct node{ datatype data; struct node * next; } listnode;typedef listnode* linklist;
/*--------------------------------------------*/ /* 删除单链表中重复的结点 */
/*--------------------------------------------*/ linklist deletelist(linklist head)
{ listnode *p,*s,*q; p=head->next; while(p) {s=p; q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q); q=s->next;} else
{ s=q; /*找与P结点值相同的结点*/ q=q->next; }
p=p->next; }
return head; }
11、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问 }stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。 {top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈 {s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点 {for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存 if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配 {pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);} }
while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0) return(null);//q、p无公共祖先 }//结束Ancestor
12、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。 13、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。 void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数 node edge[];
scanf( \"%d%d\输入边数和顶点数。 for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf(\"%d%d%d\" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。 {edge[0]=edge[i]; j=i-1;
while (edge[j].wwhile (eg>=n) //破圈,直到边数e=n-1.{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边
}//while }//算法结束。
connect()是测试图是否连通的函数,可用图的遍历实现,
14、设计一个尽可能的高效算法输出单链表的倒数第K个元素。
15、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。 #include typedef char datatype; typedef struct node{ datatype data; struct node * next; } listnode;typedef listnode* linklist;
/*--------------------------------------------*/ /* 删除单链表中重复的结点 */
/*--------------------------------------------*/ linklist deletelist(linklist head)
{ listnode *p,*s,*q; p=head->next; while(p) {s=p; q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q); q=s->next;} else
{ s=q; /*找与P结点值相同的结点*/ q=q->next; }
p=p->next; }
return head; }