计算:① 10*6 ② 7*(2*1).
3.有一个数算符号°,使下列算式成立:
5.对于任意的整数x、y,定义新运算“△”,
如果1△2=2,则2△9=?
7.“*”表示一种运算符号,它的含义是:
9.规定a△b=a+(a+1)+(a+2)+„+(a+b-1),(a、b均为自然数,b>a)如果x△10=65,那么x=?
10.我们规定:符号。表示选择两数中较大数的运算,例如:5 °3=3 °5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:
习题解答
②按照规定的运算:
所以有5x-2=3O,解出x=6.4.
左边:
8.解:由于
9.解:按照规定的运算:
x△10=x+(x+1)+(x+2)+„+(x+10-1)
=10x+(1+2+3+„+9)=10x+45
因此有10x+45=65,解出x=2.
我们学过的常用运算有:+、-、×、÷等.
如:2+3=5
2×3=6
都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.
我们先通过具体的运算来了解和熟悉“定义新运算”.
例1 设a、b都表示数,规定a△b=3×a—2×b,
①求 3△2, 2△3;
②这个运算“△”有交换律吗?
③求(17△6)△2,17△(6△2);
④这个运算“△”有结合律吗?
⑤如果已知4△b=2,求b.
分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2= 3×3-2×2=9-4= 5
2△3=3×2-2×3=6-6=0.
②由①的例子可知“△”没有交换律.
③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步
39△2=3 × 39-2×2=113,
所以(17△6)△2=113.
对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次
17△14=3×17-2×14=23,
所以17△(6△2)=23.
④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.
例2 定义运算※为a※b=a×b-(a+b),①求5※7,7※5;
②求12※(3※4),(12※3)※4;
③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.
解:① 5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.
②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,
所以 12※(3※4)=43.
对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次
21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);
b※a=b×a-(b+a)
=a×b-(a+b)(普通加法、乘法交换律)
所以有a※b=b※a,因此“※”有交换律.
由②的例子可知,运算“※”没有结合律.
④5※x=5x-(5+x)=4x-5;
3※(5※x)=3※(4x-5)
=3(4x-5)-(3+4x-5)
=12x-15-(4x-2)
= 8x- 13
那么 8x-13=3
解出x=2.
③这个运算有交换律和结合律吗?
的观察,找到规律:
例5 x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=,求(1△2)*3的值.
分析 我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k×1×2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.
(1△2)*3=a*3,按“*”的定义: a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=求出 k的值.
解:因为1*2=m×1+n×2=m+2n,所以有m+2n
=5.又因为m、n均为自然数,所以解出:
①当m=1,n=2时:
(2*3)△4=(1×2+2×3)△4
=8△4=k×8×4=32k
有32k=,解出k=2.
②当m=3,n=1时:
(2*3)△4=(3×2+1×3)△4
=9△4=k×9×4=36k
所以m=l,n=2,k=2.
(1△2)*3=(2×1×2)*3
=4*3
=1×4+2×3
=10.
在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.
我们学过的常用运算有:+、-、×、÷等.
如:2+3=5
2×3=6
都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.
我们先通过具体的运算来了解和熟悉“定义新运算”.
例1 设a、b都表示数,规定a△b=3×a—2×b,
①求 3△2, 2△3;
②这个运算“△”有交换律吗?
③求(17△6)△2,17△(6△2);
④这个运算“△”有结合律吗?
⑤如果已知4△b=2,求b.
分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2= 3×3-2×2=9-4= 5
2△3=3×2-2×3=6-6=0.
②由①的例子可知“△”没有交换律.
③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步
39△2=3 × 39-2×2=113,
所以(17△6)△2=113.
对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次
17△14=3×17-2×14=23,
所以17△(6△2)=23.
④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.
例2 定义运算※为a※b=a×b-(a+b),①求5※7,7※5;
②求12※(3※4),(12※3)※4;
③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.
解:① 5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.
②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,
所以 12※(3※4)=43.
对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次
21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);
b※a=b×a-(b+a)
=a×b-(a+b)(普通加法、乘法交换律)
所以有a※b=b※a,因此“※”有交换律.
由②的例子可知,运算“※”没有结合律.
④5※x=5x-(5+x)=4x-5;
3※(5※x)=3※(4x-5)
=3(4x-5)-(3+4x-5)
=12x-15-(4x-2)
= 8x- 13
那么 8x-13=3
解出x=2.
③这个运算有交换律和结合律吗?
的观察,找到规律:
例5 x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=,求(1△2)*3的值.
分析 我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k×1×2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.
(1△2)*3=a*3,按“*”的定义: a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=求出 k的值.
解:因为1*2=m×1+n×2=m+2n,所以有m+2n
=5.又因为m、n均为自然数,所以解出:
①当m=1,n=2时:
(2*3)△4=(1×2+2×3)△4
=8△4=k×8×4=32k
有32k=,解出k=2.
②当m=3,n=1时:
(2*3)△4=(3×2+1×3)△4
=9△4=k×9×4=36k
所以m=l,n=2,k=2.
(1△2)*3=(2×1×2)*3
=4*3
=1×4+2×3
=10.
在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.
1.计算9998+998+98+8+88
2.计算799999+79999+7999+799+79
3.计算(1988+1986+1984+„+6+4+2)-(1+3+5+„+1983+1985+1987)
4.计算1—2+3—4+5—6+„+1991—1992+1993
5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?
6.求出从1~25的全体自然数之和.
7.计算 1000+999—998—997+996+995—994—993+„+108+107—106—105+104+103—102—101
8.计算92+94++93+95+88+94+96+87
9.计算(125×99+125)×16
10.计算 3×999+3+99×8+8+2×9+2+9
11.计算999999×78053
12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?
习题解答
1.利用凑整法解.
9998+998+98+8+88
=(9998+2)+(998+2)+(98+2)+(8+2)(88+2)-10
=900000+90000+9000+900+90-10
=999980.
2.利用凑整法解.
799999+79999+7999+799+79
=800000+80000+8000+800+80-5
=888875.
3.(1988+1986+1984+„+6+4+2)-(1+3+5+„+1983+1985+1987)
=1988+1986+1984+„+6+4+2-1-3-5„
-1983-1985-1987
=(1988-1987)+(1986-1985)+„+(6-5)+(4-3)+(2-1)
=994.
4.1-2+3—4+5-6+„+1991-1992+1993=1+(3-2)+(5-4)+„+(1991-1990)+(1993-1992)
= 1+1×996
=997.
5.1+2+3+4+5+6+7+8+9+10+11+12
=13×6=78(下).
6.1+2+3+„+24+25
=(1+25)+(2+24)+(3+23)+„+(11+15)+(12
+14)+13
=26×12+13=325.
7.解法1:1000+999—998—997+996+995—994-993+„+108+107—106—105+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+„+(108+107—106—105)+(104+103—102—101)
解法 2:原式=(1000—998)+(999—997)+(104—102)
+(103—101)
=2 × 450
=900.
解法 3:原式=1000+(999—998—997+996)+(995—994
-993+992)+„+(107—106—105+104)
+(103—102—101+100)-100
=1000—100
=900.
9.(125×99+125)×16
=125×(99+1)×16
= 125×100×8×2
=125×8×100×2
=200000.
10.3×999+3+99×8+8+2×9+2+9
= 3×(999+1)+8×(99+1)+2×(9+1)+9
=3×1000+8×100+2×10+9
=3829.
11.999999×78053
=(1000000—1)×78053
=78053000000—78053
=78052921947.
12.1111111111×9999999999
=1111111111×(10000000000—1)
=11111111110000000000—1111111111
=111111111088888888.
这个积有10个数字是奇数.
一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_____米. 答案 14
题目实质上说,火车和人用8秒时间共同走了152米,即火车与人的速度和是每秒152÷8=19(米),火车的速度是每秒63360÷3600=17.6(米).
所以,人步行的速度是每秒19-17.6=1.4(米).