平行线判定和性质专项训练 班级: 姓名:
1.已知如图,指出下列推理中的错误,并加以改正。
(1)∵∠1和∠2是内错角,∴∠1=∠2, (2)∵AD//BC, ∴∠1=∠2(两直线平行,内错角相等) (3)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等)
2.如图,∠1=∠2,∠3=∠4,试向EF是否与GH平行?
3.如图写出能使AB//CD成立的各种题设。
如:∵∠ =∠ ∴AB//CD
4.已知如图,AB//CD,∠1=∠3,求证:AC//BD。
5.已知如图,AB//CD,AC//BD,求证:∠1=∠3。
1
6.已知如图∠1=∠2,BD平分∠ABC,求证:AB//CD
7.已知如图,AB//CD,∠1=∠2,求证:BD平分∠ABC。
8.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF, 求证:BC平分∠DBE。
9.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°, 求证:∠1=∠7
三、证明角相等的基本方法 已学过的关于两个角相等的命 (1)同角(或等角)的余角相等;(2)同角(或等角)的补角相等;(3)对顶角相等; (4)
2
两直线平行,同位角相等;内错角相等;同旁内角互补。 10,如图∠1=∠2=∠C,求证∠B=∠C。
11、已知如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D。
12、已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3, 求证:∠1=∠2。
四、两条直线位置关系的论证。
两条直线位置关系的论证包括:证明两条直线平行,证明两条直线垂直,证明三点在同一直线上。 1、学过证明两条直线平行的方法有两大类 (一)利用角;
(1)同位角相等,两条直线平行; (2)内错角相等,两条直线平行; (3)同旁内角互补,两条直线平行。 (二)利用直线间位置关系:
(1)平行于同一条直线的两条直线平行; (2)垂直于同一条直线的两条直线平行。 13、如图,已知BE//CF,∠1=∠2,求证:AB//CD。
3
14、如图CD⊥AB,EF⊥AB,∠1=∠2,求证:DG//BC。
2、已经学过的证明两直线垂直的方法有如下二个: (1)两直线垂直的定义
(2)一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。(即证明两条直线的夹角等于90o而得到。)
15、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。
五、一题多解。
16、已知如图,∠BED=∠B+∠D。求证:AB//CD。
4