您好,欢迎来到刀刀网。
搜索
您的当前位置:首页神经科学论文 (4)

神经科学论文 (4)

来源:刀刀网
Cell.Mol.LifeSci.(2010)67:677–700DOI10.1007/s00018-009-0177-1

CellularandMolecularLifeSciences

REVIEW

Nonsense-mediatedmRNAdecayinhumancells:mechanisticinsights,functionsbeyondqualitycontrolandthedouble-lifeofNMDfactors

PamelaNicholson•HasmikYepiskoposyan•StefanieMetze•RodolfoZamudioOrozco•

¨hlemannNicoleKleinschmidt•OliverMu

Received:22July2009/Revised:16September2009/Accepted:6October2009/Publishedonline:27October2009

¨userVerlag,Basel/Switzerland2009ÓBirkha

AbstractNonsense-mediateddecayiswellknownbytheluciddefinitionofbeingaRNAsurveillancemechanismthatensuresthespeedydegradationofmRNAscontainingprematuretranslationterminationcodons.However,aswereviewhere,NMDisfarfrombeingasimplequalitycontrolmechanism;italsoregulatesthestabilityofmanywild-typetranscripts.WesummarisetheabundanceofresearchthathascharacterisedeachoftheNMDfactorsandpresentaunifiedmodelfortherecognitionofNMDsubstrates.ThecontentiousissueofhowandwhereNMDoccursisalsodiscussed,particularlywithregardtoP-bodiesandSMG6-drivenendonucleolyticdegradation.Inrecentyears,thediscoveryofadditionalfunctionsplayedbyseveraloftheNMDfactorshasfurthercomplicatedthepicture.Therefore,wealsoreviewthereportedrolesofUPF1,SMG1andSMG6inothercellularprocesses.KeywordsNMDÁNonsensemRNAsurveillanceÁPost-transcriptionalgeneregulationÁPTCÁmRNAturnover

Introduction

Thecascadeofeventsduringgeneexpression,fromtranscriptionoftheDNAencodedgeneticinformationto

P.NicholsonÁH.YepiskoposyanÁS.MetzeÁ

¨hlemann(&)R.ZamudioOrozcoÁN.KleinschmidtÁO.Mu

InstituteofCellBiology,UniversityofBern,Baltzerstrasse4,3012,Bern,Switzerland

e-mail:oliver.muehlemann@izb.unibe.ch

theeventualproteinsynthesis,arguablyrepresentssomeofthemostinfluentialbiochemicalpathwaysforalivingorganism.Naturally,diverseregulationmechanismshaveevolvedtoensuretheaccuracyofgeneexpressionatmultiplelevels,amongstthemisaprocesscommonlyreferredtoasnonsense-mediatedmRNAdecay(NMD)ormRNAsurveillance.Thirtyyearsago,itwasobs-ervedinSaccharomycescerevisiaethatnonsensecodonstruncatingtheopenreadingframe(ORF)oftheura3mRNAdramaticallyreducedtheRNA’shalf-life[1]andthatinb0-thalassemicpatientshomozygousforanon-sensemutationintheb-globingene,theb-globinmRNAwassubjectedtorapiddegradation[2].FastdegradationofmRNAsharbouringtruncatedORFsduetoprematuretranslationterminationcodons(PTCs)wassubsequentlydocumentedinmanyotherorganisms,anditisbelievedtooccurinmostifnotalleukaryotes(reviewedin[3]).ThenamescoinedtodescribethisPTC-associatedmRNAturnoverpathway,NMDandmRNAsurveillance,emphasiseitsqualitycontrolfunc-tioninpreventingtheproductionofpotentiallydeleteriousC-terminallytruncatedproteinstranslatedfromPTC-containingmRNAs.However,ithasbecomeclearduringrecentyearsthatmanyphysiologicalmRNAsarealsoNMDsubstrates,indicatingaroleforNMDbeyondmRNAqualitycontrolasatranslation-dependentpost-transcriptionalregulatorofgeneexpres-sion(reviewedin[4]).

Herein,wedescribedifferenttypesofNMDsubstratesandreviewrecentliteraturethathasledtoaunifiedmolecularmodelfortheidentificationofNMDelicitingmRNAs.Additionally,wesummariseourknowledgeaboutthetrans-actingNMDfactors,theirbiochemicalfeaturesandtheintriguingdouble-lifeofseveralofthesefactors.

678NMDtargetsbothaberrantandphysiologicaltranscripts

OneimportantgroupofNMDsubstratescomprisetran-scriptsharbouringaPTCthattruncatestheirORFs.Ifnotdetectedanddegraded,thePTC-containing(PTC?)transcriptscanresultintheaccumulationofpotentiallyharmfulC-terminallytruncatedproteins.PTC?transcriptsariseeitherbymutations(orrearrangementsinthecaseofimmunoglobulingenes)attheDNAlevel,orattheRNAlevelduetoerrorsintranscription,pre-mRNAprocessingandinparticularbyaberrantalternativesplicing(Table1).

OntheDNAlevel,directnonsensemutationsandmorefrequentlyframe-shiftingdeletionsandinsertionsgeneratePTCs.Moreover,mutationsatsplicesitesorsplicingregulatorysequencescanresultinaberrantlysplicedPTC?transcripts.TheprogrammedDNArearrangementsoccurringintheimmunoglobulinandT-cellreceptorgenesduringlymphocytematurationgeneratePTCsatahighfrequency,duetorandomdeletionsandtheadditionofnon-templatednucleotidesattherecombinationsites(reviewedin[5]).Hence,NMDisveryimportantforthedifferentiationandmaintenanceofhematopoieticcells[6].

ErrorsduringtranscriptioncanalsoproducePTC?transcripts,albeitlessfrequently.Incontrast,unproductive

Table1TranscriptsthatcanbetargetedforNMDinmammaliancellsPTC?

PTCsarisingatNonsensemutationsthatDNAlevel

directlygeneratePTCsNucleotideinsertionsanddeletionsthatshiftthereadingframe

Mutationsleadingtosplicesignalalterations

DNArearrangementsof

immunoglobulinandT-cellreceptorgenes

PTCsarisingatTranscriptionerrorsRNAlevel

FaultyoralternativesplicingPre-mRNAsthatescapednuclearretentionProgrammedframeshifts

PTC-PhysiologicalmRNAswithuORFmRNAs

mRNAswithintronsinthe30UTR

mRNAswithlong30UTRsSelenoproteinmRNAsmRNAsoftransposons,retrovirusesandpseudogenes

P.Nicholsonetal.

alternativesplicingisbelievedtoconstituteamajorsourceofPTC?mRNAsinmammals.Asmuchas95%ofmulti-exonhumangenesarealternativelyspliced[7],andtheaveragenumberofalternativelysplicedmRNAisoformspergeneisapproximately3.5inhumans[8].Usingbio-informaticsapproaches,itwasproposedthataboutone-thirdofthealternativelysplicedhumanmRNAscontainaPTC,implyingawidespreadcouplingofalternativesplicingandNMD[9].Forexample,severalstudieshaverevealedthatsomealternativesplicing(AS)eventsexploitNMDforpost-transcriptionalregulation(termedregulatedunproductivesplicingandtranslation:RUSTorAS-NMD[9]).Thistypeofregulationiscommonformanysplicingregulators,includingSRproteinsandhnRNPs,whichindicatesanimportantfeedbackregulationofsplicing(reviewedin[10,11]).Interestingly,suchPTC-introducingexonsoftencoincidewithultra-conservedgenomicele-ments,suggestingakeyroleforRUSTinvertebratebiology.However,amicroarrayprofilingstudydetermin-ingtherelativelevelsofPTC?comparedtothePTC-freesplicevariantsinavarietyofmammaliantissuetypesproposedthatmostPTC-generatingalternativesplicingeventslocatedwithintheORFofmammaliangenespro-ducePTC?mRNAsthatarenotunderstrongpositiveselectionpressureandhenceareunlikelytohaveimportantfunctionalroles[12].Altogether,thisadvocatesthatcellsproducealargenumberoffaultyPTC?mRNAsthatarerecognisedandeliminatedbyNMD.Nonetheless,severalstudieshaveinferredanevenbroaderroleoftheNMDpathwayinmutingthe‘‘transcriptionalnoise’’ofsuppos-edlynon-functionalRNAssuchastranscribedpseudogenes,ancienttransposonsormRNA-likenon-pro-teincodingRNAsfromintergenicregions[13–15].

AnothergroupofNMDsubstratesincludesphysiologi-calRNAtranscriptsthatencodefunctionalfull-lengthproteins.AcrucialroleofNMD,notonlyasavacuumcleanerforaberranttranscriptsbutalsoasaregulatorofphysiologicalmRNAabundance,becameapparentduetoseveralmicroarraystudiesindifferentorganisms(reviewedin[16]).Transcriptome-profilingwithNMD-deficientSaccharomycescerevisiae,DrosophilamelanogasterandHomosapienscellsrevealedthatNMDdirectlyandindi-rectlycontrolstheabundanceof3–10%ofallmRNAsintherespectivecells[14,17–21].Severalfeaturesofphys-iologicalmRNAscanrenderthemNMD-sensitive,whereassomemRNAshaveevolvedstabilisingelementsprotectingthemfromNMD.Notably,intronsinthe30untranslatedregions(30UTR),ORFslocatedupstreamofthemaincodingregion(uORFs),programmedframeshiftsandlong30UTRsallcanelicitNMD.MessengerRNAscontainingUGAtriplet(s)thatdirectselenocysteineincorporationrepresentaninterestingcaseofNMDsub-strates;whenseleniumisabundant,UGAcodesfor

NMDinhumancellsselenocysteine,butitisinterpretedasaPTCwhentheseleniumconcentrationislow[22](see‘‘Inselenium-deprivedcells,NMDreducestheselenoproteinencodingmRNA’’foradiscussionofselenoproteinsandNMD).ThelargeanddiverserepertoireoftranscriptscontrolledbyNMDreflectsthesignificantinfluenceofNMDonthemetabolismofthecellandconsequentlyinmanyhumandiseases.

NMDisimplicatedinthemodulationofmanygeneticdiseases

Therearenumerousexamplesofhumandiseasesassoci-atedwithmutationsthatresultinPTCs[23–25].Iftranslated,thePTC?mRNAswouldgiverisetotruncatedproteinsthathaveeithercompletelylosttheirfunction,arestillfunctional,haveacquireddominant-negativefunctionorhavegainednewfunctions.Asaconsequenceofthesedifferentpossibilities,NMDhasadouble-edgedeffectonthemanifestationofadisease:NMDisdetrimentalifitpreventstheproductionofproteinswithsomeresidualfunction,butitisbeneficialifitpreventsthesynthesisoftoxictruncatedproteins.Hence,NMDrepresentsacrucialmodulatoroftheclinicaloutcomeofmanygeneticdiseases.

ThemajorityofPTC?disease-associatedallelesexerttheirnegativeeffectsduetoinsufficientproductionofafunctionalprotein.AnexamplewhereNMDaggravatestheclinicaloutcomeisprovidedbyseveraldiseasephenotypescausedbymutationsinthedystrophingene.Whilemostofthetruncatingmutationsinthedystrophingeneareasso-ciatedwithasimilarphenotype,theraretruncatingmutationsthatoccurnearthe30endofthedystrophingenecanresultinextremelyvariablephenotypes.Ithasbeensuggestedthatalltruncatedproteinsencodedbygeneswithmutationsnearthe30endwouldintheorybecapableofrescuingtheDMDphenotype,butwhenNMDpreventstheirsynthesis,theclinicalmanifestationsofthediseaseareaggravated[26].Conversely,NMDhasawell-docu-mentedbeneficialroleinthedegradationofPTC?b-globinmRNA,therebypreventingthesynthesisofC-terminallytruncatedb-globinthatwouldotherwisecausetoxicprecipitationtogetherwithsurplusa-globinchains.Inaheterozygotecontext,thesecondwild-typeallelesupportsalmostnormallevelsofb-globinsynthesis,contributingtothecorrecthaemoglobinassembly,whichisreflectedintherecessiveinheritanceofthisb-thalassemiatype.However,rareNMD-insensitivePTCsareresponsibleforthedominantformofb-thalassemia[27,28].

Giventhegeneralinspectionandclean-uproleofNMD,itisnotsurprisingthatdiseasesassociatedwithpre-maturetranslationterminationareremarkablydiverse.

679

Furthermore,asalludedtoabove,thePTCpositiondeter-minesifNMDensuesandthiscontributestotheseverityoftheclinicalmanifestations.Tolistafewexamplesofthisdiversity:(1)thediseaseseverityintheconnectivetissuedisorderMarfansyndromecorrelateswiththeabundanceofthePTC?fibrillin1(FBN1)mRNA[29],(2)PTCsatdifferentpositionsinCFTR(cysticfibrosistransmem-brane-conductanceregulator)cancausemildtoseverecysticfibrosis[30],and(3)truncatedformsofIFNGR1(interferongammareceptor1)canresultinrecessivelyordominantlyinheritedsusceptibilitytomycobacterialinfections[31,32].

NMDalsoappearstoplayaprominentroleincarcino-genesis.PTCsinseveraltumoursuppressorgenes(BRCA1,p53,WT1)havebeenreportedtoresultinreducedabundanceoftheirmRNAsduetoNMD[33–36].Indeed,astrategyreferredtoas‘‘geneidentificationbyNMDinhibition’’(GINI)hasbeensuccessfullyusedtoidentifytumoursuppressorgenes[37,38],pointingtoacrucialroleofNMDineliminatingfaultytumoursup-pressortranscriptsandthusprotectingcellsfrommalignantgrowth.

Inadditiontodiseasesthatresultfromnonsensemuta-tions,defectsinNMDfactorscanalsocausedisease.ArecentstudyidentifiedmutationsintheNMDcorefactorUPF3BtoberesponsibleforX-linkedmentalretardation[39].Furthermore,thereisagrowingbodyofevidencethatmanyphysiologicaltranscriptsaresubjecttoNMDregu-lation.ItislikelythattheimpairmentofNMD-dependentregulationoftheabundanceofthesemRNAsisayettobeidentifiedcauseofvarioushumandiseases.

FormanydisorderscausedbyPTC-generatingmuta-tionstherearenoeffectivetreatmentsyetavailable.However,ininstanceswhereNMDeliminatestranscriptsthat,despitethePTC,wouldstillencodeafunctionalprotein,promisingresultshavebeenobtainedwithPTCread-throughapproaches.Remarkably,aslittleas1–5%ofnormalproteinlevelscangreatlyreduceoreliminatetheprincipalmanifestationsofPTC-associateddiseasessuchascysticfibrosisandHurlersyndrome[40–42].Amino-glycosideantibiotics(e.g.gentamicin)havebeenshowninvitrotosuppressnonsensemutationsbypromotingread-throughofterminationcodonsandhaveimprovedCFTRfunctioninclinicaltrialswithcysticfibrosispatients[43,44].However,veryhighaminoglycosideconcentrationsarerequiredandtheassociatedtoxicsideeffectshavelimitedtheirclinicaluse.Instead,anewsuppressorofPTCswasrecentlyreportedthatselectivelyinducesribo-somalread-throughonlyatPTCsandnotatnaturalterminationcodons[45].Thissmallmolecularcompound,calledAtaluren(formerlyPTC124),rescuedstriatedmus-clefunctioninmdxmice(amodelformusculardystrophy)andhasbeentestedinphaseIIclinicaltrialsoncystic

680fibrosispatients.TheoraladministrationofthedrugreducedtheepithelialelectrophysiologicalabnormalitiescausedbyCFTRdysfunction.Atalurenwasgenerallywelltoleratedwithinfrequentandmildtomoderateadverseeffects[46].Theseresultsareencouragingandtheappli-cationofAtalurenmightwellbeextendedtootherdiseasessuchasDMD.

Thepartslist:humanNMDfactors

Thefirsttrans-actingfactorsrequiredforNMDwereidentifiedthroughgeneticscreensinS.cerevisiae(calledUpfs,forup-frameshift;[47–50])andinC.elegans(calledSMGs,forsuppressorofmorphologicaldefectsongeni-talia;[51–53]).Thehumanorthologueswerelateridentifiedbasedonsequencesimilarities[54–61].TheNMDpathwayinhumancellscomprisesthefactorsUPF1,UPF2,UPF3A,UPF3B,SMG1,SMG5,SMG6andSMG7,withUPF1,UPF2andUPF3(AandB)beingthehomo-loguesofC.elegansSMG2,SMG3andSMG4,respectively(reviewedin[3];Table2).Morerecently,fouradditionalNMDfactorshavebeendescribed:NAG,DHX34,SMG8andSMG9.RNAi-mediateddepletionofNAGandDHX34,thehumanhomologuesofC.elegansSMGL-1andSMGL-2,increasedtheabundanceofaNMDreportermRNA[62].ThetwofactorsSMG8andSMG9wereshowntoregulateSMG1kinaseactivityinhumancellsandtheirknockdownsmoderatelystabilisedaPTC?b-globinreportertranscript[63].AninterspeciescomparisonofNMDfactorsrevealedanumberofinter-estingdifferenceswithprobablemechanisticconsequences(seebelow).WhileSMG7ispresentinmammalsandC.elegans,D.melanogasterappearstolackaSMG7homo-logue[],andincontrasttometazoans,S.cerevisiaeonlyrequiresUPF1,UPF2andUPF3forNMD.SMG5andSMG6homologuesarenotpresentinS.cerevisiaeanddeletionoftheSMG7homologueEbs1phasbeenshowntoonlyslightlyincreasetheabundanceofendogenousNMDtargets[65].

TheUPFproteinsconstitutethecoreNMDmachineryOfalltheUPFgenes,UPF1isfunctionallythemostimportantfactorforNMDandhenceisthemostconserved[3,66].UPF1isagroup1RNAhelicaseandnucleicacid-dependentATPase.TheATPaseactivityresidesintwoofthesevenhelicasemotifsinthemiddlesectionoftheproteinandislinkedtothe50-to-30helicaseactivity[67,68].ATPhydrolysisprovidestheenergytofacilitatemodulationsinthestructureofRNAorRNA–proteincomplexes[69].UPF1interactswithUPF2[56,60,70]throughitsN-terminalcysteine-andhistidine-rich(CH)

P.Nicholsonetal.

domain,whichdisplaysauniquecombinationofthreezinc-bindingmotifsarrangedintwotandemmodules[71].UPF1alsointeractswiththeeukaryotictranslationreleasefactorseRF1andeRF3[72,73],andKashimaetal.reportedbasedonimmunoprecipitationexperimentsthatUPF1formsacomplexwithSMG1,eRF1andeRF3(calledSURFcomplex[74]).UPF1isaphosphoproteinandsequentialphosphorylation/dephosphorylationcyclesareessentialforNMDinmammalsandC.elegansbecausetheycontributetoremodellingofthemRNAsurveillancecomplex[58].TheC-terminalserine-glutamine(SQ)motifsofUPF1aretargetsforphosphorylationbySMG1[55,61,75].InadditiontotheSMG1kinase,UPF1phosphorylationwasshowntorequireUPF2andUPF3[66,74,75],butmorerecentstudieshaveprovidedevidenceforbothUPF2-independentandUPF3-independentNMDpathways[73,76–79].ThephosphorylationofUPF1probablyinducesthedissociationofeRF3fromUPF1,sinceitwasfoundthattheover-expressionofaSMG1mutantdeficientforitskinaseactivitystronglyincreasedUPF1co-immunoprecipitationwitheRF3[74].Phosphor-ylatedUPF1interactswithSMG5,SMG6andSMG7,whichinturnpromotesdephosphorylationofUPF1bytheproteinphosphatasePP2A[58,80,81].

SimilartoUPF1,UPF2isalsoaphosphoprotein,bothinmammals[81]andinS.cerevisiae[82].PhosphorylationoftheyeastUpf2poccursatserineresiduesinitsN-terminaldomain.TogetherwithotherspecificaminoacidsintheN-terminalregion,theseserineresiduesareresponsibleforelicitingNMDandfortheinteractionofUpf2pwithHrp1p,anRNA-bindingproteinimplicatedinyeastNMD[82].TheN-terminalregionalsocontainsseveralnuclearlocalisationsignals(NLS),yettheproteinresidespre-dominantlyinthecytoplasm[56,57,60].BesidesbindingtoUPF1,UPF2alsointeractsthroughaseparatesurfacewithUPF3,therebyactingasabridgebetweenthesetwoproteins[56,60,83,84].ThetworegionsofhumanUPF2thatcontactUPF1havebeenmappedtoaminoacids94–133and1,085–1,124/1,167–1,194,withtheC-terminalregionofUPF2contributingmoretotheinteraction[60].ThepreciseinteractionoftheC-terminalregionofUPF2withtheCHdomainofUPF1hasrecentlybeendeterminedinastructuralstudy[70].Usinghighlyconserved,mainlynegatively-charged,residuesinthelastofitsthreeMIF4G(middleportionofeIF4G)domains,UPF2interactswithamainlypositively-chargedb-sheetsurfaceoftheRNPdomain(ribonucleoprotein-typeRNA-bindingdomain)ofUPF3B[85].Notably,UPF2aloneandtheUPF2-UPF3Bcomplex,butnotUPF3Balone,bindtoRNAinvitro[85].UPF3istheleastconservedoftheUPFproteins[3].Incontrasttoyeast,nematodesandflies,thehumangenomeencodestwoUPF3genes:UPF3Aonchromosome13andUPF3B(alsocalledUPF3X)ontheXchromosome[56,

Table2HumanNMDfactorsCharacteristicsUPF2SMG1SMG5aSMG6SMG7eRF1eRF3PP2AbBTZeUPF1UPF3AUPF3BeRF3cSMG1UPF2eRF3Y14dMAGOHdBTZeeIF4A3eSer/Thr-kinaseofPIKKfamily,phosphorylatesUPF1UPF2SMG8fSMG9fUPF1aSMG7PP2AUPF1PP2AUPF1SMG5PP2AffcProteinAlternativename/nameinotherspeciesDirectinteractionpartnersCellularlocalisationReferencesUPF1RENT1(human,mouse)NMDinhumancells

SMG2(C.elegans)PhosphorylatedatserineresiduesinC-terminalSQmotifsRNAhelicase,nucleicacid-dependentATPaseandRNA-bindingproteinShuttlingprotein;atsteady-statepredominantlyinthecytoplasm[48–50,54,56,58–61,66–71,73,74,80,83,92,96,102,103,188,225–227]UPF2RENT2(human,mouse)Nmd2p(S.cerevisiae)PromotesphosphorylationofUPF1AssociateswiththeEJCPromotesphosphorylationofUPF1Phosphoprotein,phosphorylatedatserineresiduesinN-terminalpartCytoplasmic;mainlyperinuclear[20,49,50,56,57,60,70,71,74,79,82,83,85,,92,226,228,229]SMG3(C.elegans)UPF3AandUPF3BUPF3X(=UPF3B)SMG4(C.elegans)Shuttlingprotein;atsteady-stateprimarilyinthenucleus(UPF3B)[39,49,56,60,79,83,85–,92,93,226,228]SMG1ATXUPF1Cytoplasmandnucleus[55,61,63,74,75,94,106,222,224]SMG5EST1BRequiredforUPF1dephosphorylation,directsPP2AtophosphorylatedUPF1Ribonucleasewithendonucleolyticactivity.RequiredforUPF1dephosphorylationRequiredforUPF1dephosphorylationCytoplasm;co-localiseswithSMG7toP-bodies[58,,80,96,97,99,202,203]SMG6EST1ACytoplasm[,81,96,99–101,202,203]SMG7EST1CEbs1p(S.cerevisiae)Cytoplasm;co-localiseswithSMG5toP-bodies[53,58,,65,96,97,202,203]681

682)s]e2c9n[ereAf]]]]3e33228R6666[[[[E–A28E4)1]8Y5d[nnsaodiitacAsa86iloEaddddnceeee–iosssslyyyymAlllla6r6aaaaa3lnnnnuaaaa6DllttttleooooaHCNNNNnOimGrAet-MN(siss’1ylFaPnUalfanononoiitotciaaddtteureelessemtnyylldis(drffaatnsnayce11nailenGGasnerttyiroovliDaMMtoaitpSSNNntcaaetiplpsaiencr1ysoet1r,GinitvGp1arMimaoFtotMsunPtScucaShnnmumUahh.iarftetsinydmoidwitawiDgenienDvMleaBtixiakxMstny3ceencN.CobFislp1lpNaarinPdctmGmgeodawUniresfnittsoMoolalaipohhicfecttrSciaisihiiel.ltcstasaaennaewwctiCasistherBndp3xmxrbmmenAssoeeaiunFllhrhrsooahsNEuPppCFnIFERm]6Ummm2ooco]ci02t8[nnyniieb[eomsaitdd))nisceteassntnnnwaiavrcc/aaogeeeteehertetmlesggseenciddaeeelli,.;;g.g;nceenSgnnge..CeiinsnissivpCCns((siisssiiistmniiare12nnhLLwwmmmretoGGnoonnohoonthliionMMsAtsitticcti––SSayyccllaarnraenrertooettenntinniindnietoottcituittccecncceerreiiaarirtdrriineedddorttrconnrorifioffotf2tfcfocffen4i3eeoooroolebtGGGXrriioroPDrPPraoDPTrMMAHPSSNDabcdefP.Nicholsonetal.

60].BothgenesgeneratetwoalternativelysplicedmRNAs,resultinginfourUPF3isoforms.InUPF3B,skippingofexon8leadstoaproteinlackingaminoacids270–282oftheotherwise483aminoacidscontainingpolypeptide,andexon4skippingofUPF3Aresultsina420aminoacidscontainingUPF3ASprotein,lackingaminoacids117–149ofthe452aminoacidslongUPF3ALisoform[60].TwoproteinscorrespondinginmasstoUPF3ASandUPF3ALhavebeendetectedusinganUPF3A-specificanti-serum[86],buttheshortformisprobablynotubiquitouslypro-duced[87].UPF3AandUPF3Bshareanoverallsimilarityof60%,withtheN-terminalaminoacids38–236(com-prisingtheRNPdomainandanuclearexportsignal)beingthemostconserved(86%similarity).TheC-terminalhalves(aminoacids202–453)areconsiderablymoredivergentandharbouroneorseveralNLSs[56,60].Despitetheextensivesimilarity,tetheringassayshaveshownthatUPF3BismoreeffectivethanUPF3Aattrig-geringNMDandstimulatingtranslation[88].HighactivityinNMDcorrelateswithashortC-terminalsequencemotifthatiswellconservedinUPF3Bofdifferentspecies,butnotinUPF3Aproteins[88].Recently,itwasshownthatUPF3AandUPF3BcompeteforbindingtoUPF2andconsequently,whenUPF3Blevelsarelow,moreUPF3AcanbindtoUPF2,whichstabilisesUPF3AbecauseUPF3Aaloneislikelytobeinherentlyunstable.Ontheotherhand,whenUPF3Blevelsarehigh,lessUPF3AcanbindtoUPF2andthereforetheUPF3Alevelsdecrease.MostlikelyitiscrucialthatUPF3AisquicklydegradedwhenUPF3BlevelsarehighbecauseUPF3AisalessefficientNMDactivator[87].TheUPF3proteinsarecomponentsoftheexon-junctioncomplex(EJC)[].TheC-terminalregionofUPF3interactswithacompositebindingsiteoftheEJCcore[90,91]comprisingpartsofY14,MAGOHandeIF4A3[88,92,93].

TheSMGproteinsdeterminethephosphorylationstatusofUPF1

Aspreviouslymentioned,SMG1isaproteinkinasethatcanphosphorylateUPF1[55,61].SMG1belongstothephosphatidylinositol3-kinase-relatedproteinkinase(PIKK)superfamilyandfunctionsspecificallyasaserine-threoninekinase(reviewedin[94]).RegulationofUPF1’sphosphorylationstateduringNMDisprobablylimitedtometazoansbecauseS.cerevisiaeappeartolackorthologuesofSMG1,SMG5andSMG6,andNMDisonlymoderatelyaffectedbyadeletionoftheSMG7homologueEbs1p[65].BiochemicalstudieshaverevealedSMG1indifferentmulti-proteincomplexes:inadditiontotheSURFcomplex,whereSMG1isassociatedwithUPF1,eRF1andeRF3,SMG1alsoco-immunoprecipitateswithEJCcomponents(eIF4A3,Y14,MAGOH)andNMDfactors(UPF1,UPF2,

NMDinhumancellsUPF3A,UPF3BandSMG7)inHeLacellextracts[74].ThereisevidencethatUPF1phosphorylationrequirestheassociationbetweentheSURFcomplexandtheEJC,andthatthisassociationismediatedbydirectinteractionsofSMG1withUPF2and/orY14[74].

C.elegansmutatedforSMG5,SMG6orSMG7aredeficientinNMDandaccumulatehyper-phosphorylatedSMG2(theUPF1orthologue),suggestingthatthesefactorsarerequiredfordephosphorylationofSMG2[66].More-over,SMG5interactsspecificallywithphosphorylatedSMG2,withSMG7,andwiththestructuralandcatalyticsubunitsofproteinphosphatase2A(PP2A),inferringthatSMG5maygivePP2AspecificityforUPF1[80].Similarly,humanSMG6wasalsoshowntoco-purifywiththecata-lyticsubunitofPP2A,SMG1,UPF1,UPF2andUPF3B,andalsotospecificallytargetdephosphorylationofUPF1,butnotofUPF2[81].(PleasenotethatSMG6istermedSmg5/7ainthisstudy.)

SMG5,SMG6andSMG7shareasimilardomainorganisation:allcontaintwotetratricopeptide(TPR)repeats,eitherattheN-terminus(SMG5andSMG7)orinthemiddlesection(SMG6).TPR-containingdomainsconsistof34aminoacidslongTPRrepeatsthatusuallyfunctionasmediatorsofprotein–proteininteractions[95].ForSMG7,theTPRswereshowntoadoptasimilarfoldto14-3-3,whichisasignal-transductionproteinthatbindsphosphoserine-containingpolypeptides.Sequencesimilar-itiessuggestconservationofthis14-3-3-likedomainstructureinSMG5andSMG6[96],andinSMG7thisdomainisresponsibleforbindingtoUPF1[96]aswellascontributingtoaninteractionwiththecorresponding14-3-3-likedomainofSMG5[97].

SMG5andSMG6containaPIN-likedomain(forPilTNterminus)intheirC-termini.Generally,PIN-likedomainsfunctionasphosphodiesterasesandoftenexhibitnucleaseactivity[98].DespitethefactthatthePIN-likedomainsofSMG5andSMG6adoptasimilaroverallfoldthatisrelatedtoribonucleasesoftheRNaseHfamily,SMG6harboursthecanonicaltriadofacidicresiduescrucialforRNaseHactivity,whereasSMG5lackstwoofthesethreekeycatalyticresidues[99].Thesestructuraldifferencesarereflectedatthemolecularlevel,asonlythePINdomainofSMG6hasnucleaseactivityonsingle-strandedRNAinvitro[99],anditwasrecentlydemonstratedinhumanandDrosophilacellsthatSMG6istheendonucleasethatcaninitiatecleavageofnonsensemRNAnearthePTC[100,101](seebelow).

IntracellularlocalizationofNMDfactors

Reliabledeterminationoftheintracellulardistributionofanyproteinbyimmunofluorescencemicroscopydependsontheavailabilityofhighlyspecificantibodies.Moreover,

683

plasmid-basedexpressionoftaggedproteinsorGFPfusionproteinscanproducenon-physiologicallocalisationpat-terns.Withthiscaveatinmind,immunolocalisationstudiesofNMDfactorsinhumancellsrevealedthatUPF1local-isespredominantlytothecytoplasm[56,60].However,biochemicalevidenceimpliesthatUPF1shuttlesbetweenthecytoplasmandthenucleus[102],whichisconsistentwithitsroleinbothnuclearandcytoplasmicprocesses([103,104]andseebelow).UPF2exhibitsperinuclearcytoplasmiclocalisationandUPF3isanucleo-cytoplasmicshuttlingproteinwithsteady-statenuclearlocalisation[56,60].TheSMG5,SMG6andSMG7proteinsarealllocal-isedtothecytoplasm.Over-expressedSMG5andSMG7,togetherwithUPF1,co-localisewithP-bodies,andtheC-terminusofSMG7hasbeenshowntoberequiredforthislocalisation[96,97,105].Incontrast,itwasshownthatover-expressedSMG6accumulatedinseparatecyto-plasmicfoci[97].Biochemicalfractionationandimmuno-fluorescencemicroscopyrevealedthatSMG1localisestoboththecytoplasmandthenucleus[106].

Intriguingly,inArabidopsisthaliana,mostofUPF3andasubstantialfractionofUPF2wererecentlyreportedtolocalisetothenucleolus,andnucleolarfractionswerehighlyenrichedinaberrantmRNAsthatareNMDsub-strates[107].

Distinguishingbetweenproperandaberranttranslationtermination

NMDstrictlydependsonreadingframerecognitionandthereforeontranslation.ThedecisionofwhetherNMDistobeinitiatedornotismadewhenaribosomestallsatanyofthethreeterminationcodons(UAG,UGAandUAA).ThelocalmRNPenvironmentoftheterminationcodoninfluencestheprocessoftranslationtermination(reviewedin[108–110]).Duringnormaltranslationtermination,eRF1recognisestheterminationcodonintheA-siteofthestallingribosomeandformsacomplexwiththeGTPaseeRF3tocatalysepeptiderelease[111–113].ThroughitsC-terminalregioneRF3interactswiththeC-terminusofeRF1,whiletheN-terminalregionofeRF3interactswiththeC-terminaldomainofpoly(A)-bindingprotein(PABP)[114–116],whichisbelievedtostimulateproperandeffi-cienttranslationtermination[117](Fig.1).IthasbeenshowninyeastthatwhentheinteractionbetweentheeRF3orthologueSup35andPab1pisimpaired,theterminatingribosomecannotefficientlydissociatefromthemRNA[118].Consistentwiththecorrespondingroleofmamma-liancytoplasmicpoly(A)bindingprotein1(PABPC1)instimulatingtranslationtermination,itwasrecentlydem-onstratedthatmammaliancellslackingPABPC1exhibitedincreasedread-throughofterminationcodons[73].Inthe

684Fig.1SchematicmodelofefficienttranslationterminationinthepropermRNPenvironment.ThemodelpostulatesthatnormaltranslationterminationinvolvesaninteractionbetweenPABPandeRF3,whichbyacurrentlyunknownmechanismpromotesfastpolypeptiderelease,disassemblyoftheribosomalsubunitsandre-initiationoftheribosomeatthestartcodon.Thepropertermination-stimulatingmRNPenvironmentischaracterisedbyaproteincomplexinvolvingPABP,eIF4G,thecapbindingfactor(eIF4EorCBP80/CBP20)andadditionalfactorsthatbringthe50andthe30endsofthemRNAincloseproximityandconstrainthemRNPinacircularstructure

caseoftranscriptsthataresubjectedtoNMD,theinter-actionbetweeneRF3andPABPC1islessefficientandisantagonisedbyUPF1recruitment[119](Fig.2).InS.cere-visiae,D.melanogasterandhumancells,NMDcanbesuppressedbytetheringPABPnearthePTC[73,118–122],whichfurthersupportstheNMDantagonisingfunctionofPABP.

ThekeyNMDfactorUPF1hasbeenshowntointeractwitheRF3andeRF1[72],butitiscurrentlyunknownhowUPF1isrecruitedtotheterminatingribosome,andifitispresentinallterminationevents.ThereisevidencethatthedecisionofwhetherNMDistobetriggeredornotreliesuponcompetitionbetweenUPF1andPABPforbindingtoeRF3ontheterminatingribosome[119].TheoutcomeofthiscompetitionislargelyinfluencedbythestructureofthemRNP[121].Extensiveresearchusingavarietyofmodelsystemshasprovidedamultitudeofdataregardingthe

P.Nicholsonetal.

NMD-triggeringcharacteristicsofmRNPs.OneclearlydefinedNMD-elicitingfeatureisthelengthofthe30UTR,whichproposesthatthephysicaldistancebetweentheterminationcodonandthepoly(A)tailofthetranscriptdeterminesthefateofthemRNA.Experimentscarriedoutinyeast,worms,plants,humanandflycelllinesrevealedthatterminationcodonsarerecognisedbytheNMDmachinerywhentheyaresituatedtoofarupstreamfromthepoly(A)tail[52,62,118–121,123–126].The‘‘faux30UTRmodel’’wasfirstcoinedtodescribeNMDinyeast,proposingthatprematureterminationisintrinsicallyabnormalsincethelong30UTRisnotproperlyconfiguredtobringPab1pintotheproximityofterminationcodontoensureefficienttranslationtermination[118].Basedontheaforementionedstudiesconductedinavarietyoforgan-isms,weadvocateextensionofthe‘‘faux30UTRmodel’’toaunifiedmodelthatexplainsthebasicmechanismforrecognitionofNMDsubstratesinallorganisms[4](Fig.2).InthesituationoftheNMD-inhibitingsignalfromPABPbeingabsent,thenUPF2and/orUPF3canbindtoUPF1.Inmammals,UPF1ispresentintheSURFcomplexandUPF2and/orUPF3BarethoughttopromoteSMG1-mediatedphosphorylationofUPF1[74].Subsequently,SMG5,SMG6and/orSMG7proteinscanbindtophos-phorylatedUPF1,eventuallyleadingtothedegradationofthetranscript.TheresultsfromKashimaetal.arguethatphosphorylationofUPF1requiresbothUPF2andUPF3B[74].Yet,recentdatafromotherlaboratoriesunveiledtheexistenceofbothUPF2-independentandUPF3-indepen-dentbranchesoftheNMDpathway[73,76–79].

Numerousinvestigationshaveshownthatnotonlythephysicaldistanceofthe30UTRbutalsothespecificRNAsequencesthatitcontainscandeterminethefateofthemRNA.Forexample,itwasproposedthatthesurveillancecomplexscansandidentifiesadownstreamsequenceele-ment(DSE)thatstimulatesNMDinyeast,butthiselementhasremainedpoorlydefined[127,128].Despitethefactthatsimilarsequenceelementshavenotbeenfoundinmammals,itispossiblethatalonger30UTRprovidesabetterplatformforbindingoftrans-actingfactorsthatimproveNMDefficiency.Theaverage30UTRlengthinhumansis700–800nucleotides,yetexperimentswithreportermRNAsharbouring30UTRsthatareonly200–300nucleotidesinlengthwerealreadyabletodisplaysomedestabilisationduetoNMDinhumancellculture[121].AsproposedbySinghetal.,mRNAscontaininglong30UTRshaveperhapsevolvedmechanismstoevadeNMD[119].Thestabilitycanpossiblybeachievedbyhighlystructured30UTRs,whereRNAbasepairingandinternalloopscanbringthepoly(A)tailclosertotheterminationcodon[121].Furthermore,specificRNAsequencesorsecondarystruc-turesmightrecruitNMDantagonisingfactorstothevicinityofthestopcodon.

NMDinhumancells685

Fig.2Modelforaberranttranslationtermination,whichleadstotheassemblyofamRNAsurveillancecomplexthatmarksthemRNAforsubsequentdegradation.WhenthestopcodonislocatedinanmRNPenvironmentwhereitfailstoreceivethePABP-mediatedtermination-stimulatingsignal,theribosomestallsforaprolongedperiodoftimeatthestopcodon,whichallowsbindingofUPF1toeRF3.TheassemblyofthisSURFcomplexmarksthemRNAforNMD.ThemodelfurtherpostulatesthatthismarkingstepisstillreversibleandthatthemRNAisonlyirreversiblycommittedtoNMDafterUPF1phosphorylation(licensingstep).UPF2and/orUPF3arenecessaryforSMG1-mediatedUPF1phosphorylation.ThepresenceofanEJCinthe30UTRservesasastrongenhancerofNMD(EJC-enhancedlicensing),becauseUPF2and/orUPF3interactionwiththeSURFisgreatlyfacilitatedbyvirtueoftheircloseproximity,whereasUPF2and/orUPF3recruitmenttakelongerintheabsenceofanEJC(EJC-independentlicensing),resultinginoveralllessefficientNMD.FollowingphosphorylationandpossiblyinducedbyATPhydrolysis,UPF1undergoesaconformationalchangethatincreasesitsaffinityforRNAandisthenreadyforinteractionwithSMG5–7,whichinitiatemRNAdegradation(seeFig.3)

Mammaliantissueculturestudieshaveestablishedthesplicing-dependentEJC[129,130]asanotherimportanttrans-actingcomponentforNMDinitiation.Themamma-liantranscriptomeiscomplexwithalargenumberofmulti-exongenesandextensivealternativesplicing.One-thirdofallalternativelysplicedtranscriptsareexpectedtobeNMDsubstrates[9].Thecouplingofasplicing-dependentsignaltoNMDfacilitatesefficientrecognitionofthisgroupofNMDsubstratesandincreasestheaccuracyofgeneexpression[131–133].Indeed,ifaterminationcodonoccursprematurelyinthemRNA,itisprobablethatanexon–exonjunctionwillbepresentdownstreamofthe

686PTC,andthisprobabilityincreasesthefurtherupstreamthePTCislocated.Duringpre-mRNAsplicing,EJCsaredeposited20–24nucleotidesupstreamofexon–exonjunctions[129].TheEJCisadynamicstructurewithaheterogeneousproteincomposition,whereintheproteinsY14,MAGOH,eIF4A3andBarentsz(Btz)remainasso-ciatedwithmRNAafterexportintothecytoplasmandconstitutethestablecoreoftheEJC[90,91].TheNMDfactorsUPF2andUPF3havebeenfoundassociatedwithEJC,whichhintedforaroleoftheEJCinNMD[].ItisthoughtthatEJCslocatedwithinanORFareremovedbyelongatingribosomesinaprocessthatinvolvestheribo-some-associatedproteinPYM[134].Incontrast,EJCslocateddownstreamoftheterminationcodonremainassociatedwiththemRNP.ThepresenceofanEJCdownstreamoftheSURFcomplexgreatlyfacilitatesUPF2and/orUPF3interactingwiththeSURFbyvirtueoftheircloseproximity.Accordingtothismechanisticmodel,thepresenceofanEJCdownstreamoftheterminationcodonservesasapotentenhancerofNMD(Fig.2;reviewedin[110]).

AnotherinterestingobservationwithregardstoNMDefficiencyasafunctionofPTCpositionisthatinseveralmRNAsPTCsclosetothetranslationinitiationcodonfailtoelicitefficientNMD[36,121,135–138].ItisknownthatPABPC1canbindtoeukaryoticinitiationfactor4G(eIF4G)whichactstobridgethe30and50endsofthemRNAintoacircularstructurethatenhancestranslation[139,140].Inthisclosed-loopstructure,theNMDsup-pressorPABPC1wouldalsobeinclosedistancetothe50regionofanmRNAwhereitcanantagoniseNMDinitia-tionatearlyPTCs,regardlessofthepresenceofdownstreamEJCs[122,141].Inaddition,theribosomecouldinitiateatanin-frameAUGdownstreamoftheearlyPTCandsoremovetheremainingEJCsfromthemRNA,whichwouldeliminateapotentpromoterofNMD.

Inmammaliancells,NMDhasbeenproposedtooccurduringtheso-calledpioneerroundoftranslation,beforeeIF4Ereplacesthecap-bindingcomplex(CBC)[142].CBP80,whichisaconstituentoftheCBC,hasbeenshowntointeractwithUPF1andtheknockdownofCBP80reversedNMD,butnottherepressionofsteady-statetranslationthroughthetranslationinhibitor4E-BP1([143,144],reviewedin[10]).Incontrast,NMDoccursmainlyoneIF4E-boundmRNAsinS.cerevisiae:CBC-boundtranscriptsarelargelyinsensitivetoNMDandtheyeasthomologueofCBP80isdispensableforNMD[145–147].Insummary,webelievethatmostofthecurrentlyavailableexperimentaldatasupportaNMDmodelinwhichthecompetitiveinteractionbetweenUPF1andPABPwiththeribosome-boundreleasefactorsisthekeydeterminantforNMDinitiation.Alternativemodelsthatremaintobeexperimentallytestedwererecentlyproposed

P.Nicholsonetal.

byBrognaandWen[148].Itisnotyetpossibletounam-biguouslypredictwhichmRNPsareabletoelicitNMDandtoexplaineachofthediscussedNMD-triggeringfea-turesofmRNPs.Avarietyofstudieshaveshownthatcertaincis-actingelements,suchaslong30UTRsorthepresenceofEJCsdownstreamoftheterminationcodon,aresufficientontheirowntotriggerNMD,probablybecause,inbothcases,UPF1bindingtoeRF3andsubsequentlytoUPF2and/orUPF3isfacilitated.Nonetheless,neitheralong30UTR,adownstreamEJCnoranyotherreportedNMDtriggeringfeatureonmRNAisabsolutelyrequiredforNMD.Therefore,theonlycertainrequirementforNMDsofaristhetranslation-dependentrecruitmentofUPF1tothemRNA.

DegradationofNMDtargets

Evidenceforendonucleolyticandexonucleolyticdecaypathways

MessengerRNAturnoverinvolvesanimportantandtightlyregulatedsetofribonuclease-mediateddegradationpathwaysusedbyeukaryoticcellstoregulatenormalgeneexpression,togetridofaberrantmRNAs(e.g.thosecontainingPTCs)andtoeliminateparasiticmRNAspe-cies(viralmRNAs,transposons).Duetotheircriticalfunctions,manyoftheribonucleasesresponsibleforRNAdegradationarehighlyconservedamongsteukaryotes[149–152].DegradationofnormalmRNAsisgenerallyinitiatedbytheremovalofthepoly(A)tailfromthe30endofmRNAs.Inyeast,thedeadenylationreactioniscatalysedbytheCcr4p/Caf1pcomplex,whileinmam-malsthepoly(A)tailisshortenedbytheconsecutiveactionoftwodifferentcomplexes:thePAN2/PAN3complexfirstshortensfull-lengthpoly(A)tailsofapproximately200basestoapproximately110bases.Theseintermediatepoly(A)tailsaresubsequentlytargetedbytheCCR4/CAF1complexthatremovestheremainingadenines[153]andfollowedbyexonucleolyticdegrada-tionofthetranscriptin30-to-50directionbytheexosome[154].ConcomitantwithCCR4/CAF1-mediateddead-enylation,thedecappingenzymeDCP1/DCP2removesthe7-methylguanosine(m7G)capstructure,leavinganunprotected50endthatisaccessibleforrapiddegradationbytheabundant50-to-30exonucleaseXRN1.

AnimportantquestiontoaddressiswhatpathwayofdegradationNMDfollows.Forinstance,arethegeneralmRNAturnoverpathwaysutilisedafterimpropertransla-tiontermination,orisNMDinitiatedbyspecialnucleases?InS.cerevisiae,degradationofPTC?mRNAshasbeenshowntorelyonthegeneralmRNAturnoverpathwayandamodificationthereofthatistypifiedbydeadenylation-

NMDinhumancells

Fig.3ModelfordegradationofNMDsubstrates.ThemodelpositsthatUPF1-boundmRNAscanbedegradedbytwo

differentpathways,dependingonwhethertheSMG5/SMG7heterodimerortheendonucleaseSMG6bindstophosphorylatedUPF1.InteractionofSMG5/SMG7withphospho-UPF1promotesdeadenylationfollowedbydecappingandexonucleolyticRNAdecayfrombothends(leftbranch).InteractionofSMG6withphospho-UPF1leadstoaSMG6-mediated

endonucleolyticcleavageneartheaberrantterminationsite,followedbytheexonucleolyticdegradationofthetwoRNAfragmentsfromtheinitialcleavagesite

687

independentremovalofthem7G-capstructure,followedbysubsequentXrn1p-mediated50-to-30exonucleolyticdecay[155,156].However,NMDsubstrateswerealsofoundtobechannelledintoadegradationpathwaythatinvolvesdeadenylationfollowedby30-to-50exonucleolysisbytheexosomeandSkicomplexes[155,157].Incontrast,NMDinD.melanogasteriselicitedbyendonucleolyticcleavageofthePTC?mRNAinthevicinityofthePTC.Theresulting50and30decayintermediatesarethenrapidlydegradedinthe30-to-50directionbytheexosomeandinthe50-to-30directionbyXRN1,respectively,andcanonlybedetectedincellsdepletedfortheaforementionedexonuc-leases[158].Inhumancells,thesituationislessclearandprobablymorecomplex.DegradationofNMDreportertranscriptsviatheconventionalmRNAturnoverpathway,

startingwithdeadenylation,followedbydecappingandXRN1-mediatedexonucleolyticdecay,hasbeenreported[159–161](Fig.3;SMG5/SMG7mediatedexonucleoly-sis).ConsistentwitharoleofdecappinginhumanNMD,UPF1andDCP1ahaverecentlybeendocumentedtointeractviaaproteincalledPNRC2[162].Ontheotherhand,endonucleolyticcleavagenearthePTChasrecentlybeendemonstratedinhumancellsdepletedforXRN1[100].Moreover,thePINdomainofSMG6wasshowntopossesstheendonucleaseactivityresponsibleforinitiatingNMDinbothDrosophilaandhumancells[100,101].Therefore,itseemsthatmammalianNMDtargetscanbedegradedbybothaSMG6-dependentendonucleolyticpathwayandadeadenylation-anddecapping-dependentexonucleolyticpathway(Fig.3;SMG6mediated

688endocleavage),whereasDrosophilaNMDisconfinedtotheformerandyeastNMDtothelatterdecaypathway.Consistentwiththisconclusion,mammalspossessbothSMG6andSMG7,whereasDrosophilalacksaSMG7homologueandyeasthasnoSMG6equivalent.FurtherworkisrequiredtodeterminetherelativecontributionsofthetwodecaypathwaysinvolvedinmammalianNMDandtounderstandwhatdetermineswhichdecayrouteistakenbythedifferenttypesofmRNAsdirectedtotheNMDpathway.

DoeshumanNMDtakeplaceinP-bodies?

Prominentcytoplasmicfocicalledprocessingbodies(P-bodies,alsocalledDCP1-orGW-bodies)havereceivedampleattentionduringthelastfewyearsbecausetheyseemtorepresentimportantsitesfortranslationalrepressionandmRNAdecay[163–165].Thesehighlydynamicgranulesareenrichedforcomponentsofthedecappingand50-to-30degradationmachinery,includingDCP1/DCP2,thedecappingactivatorsRCK/p54,Hedls/Ge-1,EDC3andPat1,theLsm1-7complexandthe50-to-30exonucleaseXRN1.MammalianP-bodiesalsocontainthedeadenylasesCCR4/CAF1andPAN2/PAN3[166],aswellascomponentsofthemiRNApathway[1].Additionally,ithasbeenfoundthat,undercertaincon-ditions,theNMDfactorsUPF1,UPF2,UPF3,SMG5andSMG7arelocalisedinP-bodies[97,105,162,167].Theco-localisationofthemRNAdegradationmachineryandofvariousNMDfactorsinP-bodieshasstimulatedresearchonthefunctionalsignificanceofP-bodiesinNMD.Inyeastcells,Upf1p,Upf2pandUpf3paccumu-lateinP-bodiesinDdcp1,Ddcp2orDxrn1strains[167].Furthermore,aNMDreportertranscriptwasshowntolocalisetoP-bodiesinanUpf1p-dependentmannerandmoreNMDreportertranscriptaccumulatedinP-bodiesofDupf2orDupf3strains[167].TheseobservationsarguethatNMDinyeastoccurswithincomplexesthatcanaccumulateintoP-bodies.Incontrast,NMDwasnotaffectedinDrosophilaandhumancellsbyRNAi-medi-ateddepletionofGW182andGe-1,atreatmentthatpreventedtheformationofanymicroscopicallyvisibleP-bodies[168,169].TheseresultsindicatethatNMDdoesnotrequirethepresenceofP-bodiesinmetazoans.Moreover,SMG6doesnotco-localisewithP-bodies[97],whichisconsistentwiththeviewthatmostNMDinhumancellsmightoccuroutsideofP-bodieswhereitisinitiatedbyadecapping-independentSMG6-mediatedendonucleolyticcleavageofthesubstrateRNA[100].Conversely,thisobservationdoesnotruleoutthepossi-bilitythat,underphysiologicalconditions,NMDmayoccurtosomeextentinP-bodies,inkeepingwiththereportedlocalisationofseveralNMDfactorsandaNMD

P.Nicholsonetal.

reportertranscripttoP-bodiesinover-expressioncondi-tions[97,105,162].

AnextensivearrayofphenotypesareobserveduponinactivationofNMDeffectors

WhilethemechanisticdetailsofNMDarebeinggraduallyunravelled,thephysiologicalroleofNMDstillremainslargelyunknown.Thephenotypesobserveduponinacti-vationofNMDeffectorsvaryconsiderablyamongstdifferentorganisms.NMDmutantsinS.cerevisiaeonlyshowapartialimpairmentinrespiratorygrowthwhichisenhancedatlowtemperatures[48],whereasC.elegansmutantshavedefectsinthemalebursaandthehermaph-roditevulva[51,52].Incontrast,UPF1andUPF2areessentialfortheviabilityofD.melanogasterlarvae[170],anddepletionofNMDfactorsimpairsproliferationofDrosophilaembryo-derivedcells(S2cells)[19].Likewiseinzebrafish,UPF1,UPF2,SMG5andSMG6wereshowntobeessentialforembryonicdevelopmentandsurvival[171].Inmice,knockoutofUPF1isembryoniclethalandisolatedblastocystsundergoapoptosisafteronlyafewdaysinculture[172].Likewise,noUPF2knockoutmouseembryoscouldbedetectedatday9.5postcoitus,andconditionalknockoutsofUPF2inhematopoieticprecursorsledtothecompleteextinctionofhematopoieticstemandprogenitorcells[6].Similarly,inArabidopsisthaliana,UPF1isnecessaryforseedlinggrowth[173].

Collectively,theseverityofthephenotyperesultingfrominactivationofthevariousNMDfactorscorrelateswiththeoverallcomplexityoftheorganismanditsextentofalternativesplicing.ThisallowsforthespeculationthattheaccumulationofaberrantlysplicedmRNAsandtheresultingproductionofdetrimentalC-terminallytruncatedproteinsmaybethecauseoftheobservedphenotypes.Ontheotherhand,itmaybethatNMDregulatestheexpres-sionofanessentialproteininmiceandfliesbutnotinyeastandworms.Moreover,severaloftheproteinscharacterisedasNMDfactorshavealsobeenreportedtofunctionincellularprocessesseeminglyunrelatedtoNMD,anditisthereforeequallyplausiblethattheobservedphenotypesaretheconsequenceofdisruptingtheseNMD-independentmechanisms.

Inselenium-deprivedcells,NMDreducestheselenoproteinencodingmRNA

Selenium(Se)isanessentialmicronutrientthatislinkedtomanyaspectsofhumanhealth.Auniqueclassofproteinscalledselenoproteins,mostofwhichareinvolvedinpro-tectingthecellfromoxidativestress,incorporate

NMDinhumancellsselenocysteine(SecorU)atin-frameUGAcodonsinarchaea,prokaryotesandeukaryotes.Unliketheotheraminoacids,SecismadeonitstransferRNA(tRNA)andselenocysteyl-tRNA[ser]secisdeliveredtotheA-siteoftheribosomebyaspecificelongationfactorcalledEFsec[174].ThefactthattheUGAcodonspecifiesSecincorporationratherthantranslationterminationischieflyduetothepresenceofspecificsecondarystructuresinselenoprotein-encodingmRNAstermedselenocysteineinsertion(SECIS)elements,andthetrans-actingfactorsthatassociatewiththeseSECISelements.Ineukaryotes,theSECISelementislocatedinthe30UTR(reviewedin[175]).AproteincalledSECISbindingprotein2(SBP2)bindstoSECISelementsandtothelargeribosomalsubunitandrecruitstheeEFsec-selenocysteyl-tRNA[ser]seccomplextotheribosome,ensuringefficientSecincorporationinvivoandinvitro[175,176].Moreover,SBP2canactuallysuppresstheterminationpromotingfunctionofeRF1[177].

TheefficiencyofSecincorporationvariesdependingonthenatureoftheSECISelement,thepositionoftheUGAintheORF[178]andthenucleotidessurroundingit[177,179],aswellastheintracellularseleniumconcentration[22].ItwasobservedthatSedeficiencydecreasestheabundanceofmRNAsencodingtheselenoprotein,gluta-thioneperoxidase1,andthatthisispossiblymediatedbytheNMDpathway[22].ThemRNAcodingforphospho-lipidhydroperoxideglutathioneperoxidase(PHGPx)wasalsoreportedtobeanNMDtargetinNIH3T3fibroblastsorH35hepatocytesunderSe-deprivedconditions[180],butnocorrespondingchangeinPHGPxmRNAabundanceintheliverortestisofSe-deficientratswasobserved[181].ItwassuggestedthatamechanismabsentinmouseNIH3T3fibroblastsandratH35hepatocytesmaskstheNMDofPHGPxmRNAintheratliverandtestis[180].Giventheimportanceofselenoproteinstotheviabilityoftheanimalandtheirspecialisedfunctions,thefactthattheseproteinsarehighlyconservedandancient,thecomplexcis-actingelementsandtrans-actingfactorsthatensurethattheUGAcodonisnotreadasastopcodonandtheirintricatehier-archyofexpressionwhichmatchestheSeintake,itmaybethat,underphysiologicalconditions,NMDincombinationwithadditional,presentlyunknownprocessesactstoreg-ulatethestabilityofselenoproteinencodingmRNAs.

ThemultiplepersonalitiesoftheNMDfactorsUPF1,SMG1andSMG6

Staufen-1-mediatedmRNAdecay(SMD)andNMDarecompetitivepathways

Thedouble-strandedRNAbindingproteinStaufenwasoriginallyidentifiedasamaternalfactorrequiredforthe

6

correctformationoftheanterioposterioraxisintheD.melanogasterembryo[182,183].StaufenisprincipallyknowntobeinvolvedinthetransportofmRNAstoulti-matelyachievetheirlocalisedtranslation[184,185],inmice[186]andinhumans[186,187].MammalianStaufenproteinhasfourdouble-strandRNAbindingdomains(dsRBDs)andcontainsaputativemicrotubule-bindingdomainofmicrotubule-associatedprotein1BinitsC-ter-minusthatisnotpresentintheStaufenproteinofD.melanogasterorC.elegans[187].

InadditiontoStaufen’spreviouslycharacterisedfunc-tions,mammalianStaufenwasfoundtoplayaroleinmRNAdecay[188].Yeasttwo-hybridanalysisrevealedthatStaufen-1(STAU1)interactswithUPF1,andthisinteractionwasconfirmedbyGSTpull-downsandfarwesternblotting(Table3).TetheringofSTAU1toareportermRNAcaninduceUPF1-dependentandtransla-tion-dependentmRNAdegradationcalledSMD(forSTAU1-mediatedmRNAdecay)[188].NaturaltargetsofSMDareexpectedtobindSTAU1downstreamofthetranslationterminationcodonand,upondepletionofeitherSTAU1orUPF1,themRNAshouldbestabilised.InHeLacellsdepletedforSTAU1,approximately1%ofthetran-scriptomewasmorethantwofoldup-regulatedwhilstapproximately1%wasmorethantwofolddown-regulated,inferringthatSTAU1potentiallyactstoregulateamulti-tudeoffunctionallyunrelatedphysiologicaltranscriptsandcaninfluencemanymetabolicpathways[1].

InadditiontoSTAU1,thereisasecondStaufenproteincalledSTAU2thatisencodedbyadifferentgeneandshares51%aminoacididentitywithSTAU1[190].Con-sideringthehighsequencesimilaritybetweenSTAU1andSTAU2andalsotheevidencethatSTAU2co-immuno-precipitateswithmRNAfromhumancells[190,191],agenome-wideapproachwasundertakentoexamineifSTAU1andSTAU2canbindtoandregulateasimilarcollectionofmRNAs.DistinctbutoverlappingsubsetsofcellularmRNAswerefoundtoassociatewithSTAU1andSTAU2containingRNPcomplexes[190].Tofurtherelu-cidatetheinvolvementoftheStaufenproteinsinmammalianRNAmetabolism,thestructureoftheSTAU1andSTAU2bindingsitesandtheirpositionrelativetothetranslationstartandstopcodonswereexamined.ThepositionoftheSTAU1bindingsiteiscriticalasitdeter-mineswhetherthemRNAistargetedforenhancedtranslation[192]orifitistobedegradedbySMD[188].ItappearsthatSMDisamechanismthatdependsontrans-lationandiselicitedwhenSTAU1bindstoitshairpinbindingsiteapproximately25–30nucleotidesdownstreamfromthetranslationterminationcodon.FurtheranalysishasindicatedthattheSTAU1bindingsiterequiresmoreelaboratesecondarystructurethanasinglehairpinelement[1].STAU1isthoughttorecruitUPF1tothe30UTRvia

690

Table3SummaryofadditionalNMDindependentfunctionsforUPF1,SMG1andSMG6indifferentcellularpathwaysFactorUPF1

Reportedroles

Staufen-mediateddecaypathway:STAU1bindsthe3’UTRandrecruitsUPF1toelicitdecayofthemRNADNAreplication,repairandstabilitypathways:UPF1contributestothecompletionofDNAreplicationandpropercellcycleprogression

Notesofinterest

NMDandSMDarecompetitivepathways,UPF1bindseitherUPF2orSTAU1butnottobothsimultaneously

UPF1depletionresultsinanearlyS-phasearrest.UPF1associateswithchromatininacellcycleregulatedmannerandwhenATRisdepleted,chromatinloadingofUPF1isimpaired.c-irradiationincreasesUPF1chromatinassociation.UPF1

co-immunoprecipitateswithp66subunitandp125subunitsofDNApolymerasedUPF1depletionstabiliseshistonemRNAafterHUtreatmentandattheendof

S-phase.ImmunoprecipitationshowedthatUPF1interactswithSLBP/HBP

UPF1isacomponentoftheHIV-1RNPanditsfunctionrequiresitsATPaseactivity.ItsrecruitmentmaybemediatedbySTAU1.over-expressionofUPF1resultsinup-regulationofHIV-1expressionattheRNAandproteinlevel

Detectedintelomericchromatinfractions.DepletionofUPF1increasesTERRAattelomeresandleadstotelomeredamageSMG1isactivatedbyDNAdamageandstimulatedbyUVorc-radiation.DepletionofSMG1resultsinDNAdamageandincreasedsensitivitytoradiation.Phosphorylatesp53invitroanduponc-radiationinvivo.AlongwithATM,SMG1canphosphorylateUPF1inresponsetodsDNAbreakscausedbyc-radiation.SMG1isimportantforoxidativestressprotectioninC.elegansandprotects

againstTNF-ainducedapoptosisinhumancells.SMG1alongwithATMcanmodulatep21levelstoinhibitcelldivision,induceDNArepairorblockapoptosisDetectedintelomericchromatinfractions.DepletionofSMG1increasesTERRAsignalsandleadstotelomeredamageDetectedintelomericchromatinfractions.Physicallyinteractswithtelomerase.DepletionofSMG6increasesTERRAsignalsandleadstotelomeredamage.Over-expressionresultsinend-to-endchromosomefusionsandalteredtelomerelengths

P.Nicholsonetal.

References[188,1,193]

[103,104,207,208]

ReplicationdependenthistonemRNAmetabolism:UPF1isimportantforhistonemRNAdegradation

HIV-1metabolism:possiblyUPF1

stabilisesHIV-1RNAininfectedcells

[214]

[194]

Telomeremetabolism:possiblyUPF1facilitatesTERRAreleasefromtelomeres

SMG1

Protectionofgenomicstability:SMG1initiatescellularstressresponseswhengenomeintegrity,mRNAtranslationornutrientavailabilityiscompromised

[103,104,202,203]

[106,222,224]

Telomeremetabolism:possiblySMG1facilitatesTERRAreleasefromtelomeres

SMG6

Telomeremetabolism:possiblySMG6facilitatesTERRAreleasefromtelomeres

[103,104,202,203]

[103,104,202–204]

directinteraction[188]and,therefore,SMDmaybetrig-geredbyUPF1interactingwiththeeRFsatthetranslationterminationcodonanalogoustoNMD.Withthisinmind,itwillbeinsightfultodetermineifSMDalsoinvolvestheUPF1bindingendonucleaseSMG6,whenitelicitsdegra-dationofitstargettranscripts.Interestingly,theSTAU1andUPF2-bindingsiteswithinUPF1haverecentlybeenshowntooverlap,renderingSTAU1andUPF2bindingtoUPF1mutuallyexclusive[193].DuringthedifferentiationofC2C12myoblaststomyotubes,NMDandSMDpath-waysappeartobeincompetition:SMDactivityincreaseswhiletheactivityoftheUPF2-dependentNMDpathwaydecreases[193].Insupportofthephysiologicalimportanceofthiscompetition,SMDtargetsPAX3mRNAwhose

NMDinhumancellsdecaypromotesmyogenesis,whilethemRNAencodingformyogenin,aproteinrequiredformyogenesis,isanNMDtarget[193].

STAU1andUPF1arebothinvolvedinHIV-1metabolism

UPF1andSTAU1werealsoreportedtofunctiontogetherinHIV-1RNAmetabolism[194–196](Table3).STAU1wasshowntoassociatewithHIV-1genomicRNAandtwotofiveSTAU1proteinsareincorporatedperHIV-1virion[197].STAU1over-expressioncanincreasetheabundanceofHIV-1genomicRNAandofSTAU1proteinpackagedintothevirion[196].RNAi-mediateddepletionofSTAU1resultedinasubstantialdecreaseofviralinfectivity[195].Moreover,STAU1wasshowninanRNA-dependentmannertodirectlyinteractwiththenucleocapsiddomainofthepr55Gag,akeymediatorofHIV-1genomicRNAen-capsidation[195].Therefore,theHIV-1RNPcontainsthemajorstructuralproteinpr55Gag,viralgenomicRNAandthehostproteinSTAU1,andithasbeenproposedthatSTAU1togetherwithpr55Gagplaysanimportantroleinviralassembly,genomicRNAencapsidationandthegen-erationofinfectiousviralparticles[195].

Recently,UPF1wasalsoidentifiedasacomponentoftheHIV-1RNP[194].ThepresenceofUPF1withtheHIV-1RNPismostlikelymediatedbySTAU1anditdoesnotrequireanyinteractionsbetweenUPF2andUPF3.KnockdownofUPF1ledtoalargereductioninsteady-stateHIV-1RNAandpr55Gagproteinlevels,andover-expressionofUPF1resultedinup-regulationofHIV-1expressionatthelevelofbothRNAandprotein.TheeffectsofUPF1onHIV-1RNAstabilityweredependentonitsATPaseactivityandrequiredongoingtranslation[194].ItwassuggestedthattargetingofUPF1functionmightrepresentasuitableapproachtoarrestHIV-1lateinthereplicationcycle[194].FurtherworkwillshedlightonhowUPF1isrecruitedtotheHIV-1RNP,itsexactroleandalsoifUPF1functionisutilisedbyotherretroviruses.NMDfactorsfunctionattelomeres

Telomeresaretheheterochromaticstructureslocatedattheterminioflinearchromosomes.Theycompensateforincompletesemi-conservativeDNAreplicationandalsoprotectthechromosomalendsagainstrecombinationwitheachotherandwithdouble-strandbreaks(DSBs)insidethechromosomes.Whilerepetitivesequencescoveranaverageof350basepairsinyeasttelomeres,humantelomeresexceedseveralkilobasescomposedofTTAGGGrepeats[198,199].

ThefirstconnectionbetweenNMDfactorsandtelomerefunctionwasreportedwhenitwasdiscoveredthat691

mutationsofUpf1p,Upf2pandUpf3pinyeastledtotelomereshorteningandde-repressionofsilencedtelo-mericloci[200,201].ConsistentwiththeideathatNMDaffectstheexpressionofgenesimportantfortelomerefunction,itwasfoundthatNMDmutantstrainshadincreasedlevelsofmRNAsencodingthetelomerasecata-lyticsubunit(Est2p),regulatorsoftelomerase(Est1p,Est3p,Stn1p,Ten1p)andproteinsimplicatedinregulationoftelomericchromatinstructure(Sas2p,Orc5p)[200].However,thepicturebecamemorecomplicatedwhenabioinformaticssearchforhumanhomologuesoftheS.cerevisiaeevershortertelomeres1(Est1)geneidentifiedthesamethreeproteinsthatwereindependentlyidentifiedashumanorthologuesoftheC.elegansNMDfactorsSMG5(=EST1B),SMG6(=EST1A),andSMG7(=EST1C)[202,203].Moreover,EST1A/SMG6andEST1B/SMG5werefoundtoassociatewithtelomeraseactivityinhumancellextractsandover-expressionofEST1A/SMG6ledtoend-to-endchromosomefusionsandalteredtelomerelengths[202,203](Table3).EST1A/SMG6interactswithtelomerasebybindingtothetelo-meraseRNAwithhighaffinitybutlowspecificity,andalsobymakingprotein–proteincontactswithtelomerasereversetranscriptase(TERT)[204].

Foralongtime,telomereswerebelievedtobetrans-criptionallyinactive.However,recently,asetofpolIItranscriptscalledtelomericrepeat-containingRNA(TERRA),alsoknownasTelRNA,havebeendiscoveredinhuman[104,205]andyeastcells[206](reviewedin[207]).Fascinatingly,enrichmentofNMDfactorswasdetectedintelomericchromatinfractions,andthedepletionofUPF1,SMG1andEST1A/SMG6(andtoalesserextentUPF2andEST1C/SMG7)increasedTERRAsignalsandtriggeredtelomeredamage,includingcompletetelomereloss[103,104].DespitethepresenceofoneUAGstopcodonineachtelomericrepeatsequence,itseemsthattheroleoftheNMDfactorsismostlikelynottostimulateTERRAdeg-radationbutrathertoreduceitsassociationwithtelomeres[104].IftheincreasedlevelofTERRAattelomeresisthecauseofthetelomerede-protectionobservedinNMD-deficientcells,thiswouldsuggestthatTERRAisunfavourablefortelomerestability.Ontheotherhand,ifNMD-depletiontriggerstelomeredamageindependentlyofaneffectonTERRA,theincreasedassociationofTERRAwithtelomerescouldbestimulatedbythecellinanattempttostrengthentelomereprotection.Similarly,theincreasedlevelsofTERRAobservedwiththermalshockmayhelptoprotecttelomeresagainststress-mediateddamage[205].TERRAmightalsobeinvolvedintheregulationoftelo-meraseactivity.EST1A/SMG6physicallyinteractswithtelomerase[204]and,invitro,TERRAprobablyinhibitstelomerasebyRNAduplexformationinthetemplateregionofthetelomeraseRNAcomponent(TERC)[205].

692TheeffectofTERRAontelomeraseremainstobetestedinvivo.

TherolesofUPF1inDNAreplicationandrepairEvidencefromseveraldifferentstudieshasconvergedinrecentyearstoshowthatUPF1playsasignificantroleinDNAandRNAmaintenancepathwaysthatarenecessaryforthecelltoaccomplishDNAreplication(Table3).UPF1depletionwasreportedtoresultinanearlyS-phasearrest,inwhichthecellscouldfirethestartofDNArep-licationbutwereunabletocompleteDNAreplication,andinducedanATR-dependentDNA-damageresponse[103].ThecellsaccumulatednuclearfocicomprisingtheS-phasemarkerproliferationcellnuclearantigen(PCNA),indi-catingthatUPF1isessentialforaccomplishingDNAreplicationduringS-phaseofthecellcycle.Notably,knockingdownUPF2causednoadverseeffecttoS-phaseprogression,suggestingthatUPF1’sfunctioninDNAreplicationisunrelatedtoNMD[103].Itwasfurtherobservedthathyper-phosphorylatedUPF1wasassociatedwithchromatinandthattheamountofchromatin-associ-atedUPF1vastlyincreasedduringS-phaseandalsouponc-irradiation[103].WhenATRwasdepleted,chromatinloadingofUPF1wasimpaired,whereasNMDwasnotaffectedundersuchconditions[103].Thisimpliesthat,eitherduringDNAreplicationand/oraDNArepairresponse,ATRphosphorylatesUPF1leadingtoitsasso-ciationwithchromatin,oralternativelythatUPF1ispresentonthechromatinduringreplicationandbecomesphosphorylatedbyATRinresponsetoDNAdamage.EvidencefortheinvolvementofUPF1inDNAreplicationandrepairiscompoundedfurtherbythefindingthatUPF1co-immunoprecipitateswiththep66subunitandp125catalyticsubunitofthereplicativeDNApolymerased.Incontrast,UPF2wasnotabletoco-immunoprecipitatewithp125DNApolymerased[103,208].ThefunctionofUPF1inDNAreplicationandcellcycleprogressionbecomesevenmoreintricatebyevidenceshowingthatUPF1isinvolvedinthedegradationofreplicationdependenthis-tonetranscriptsuponDNAreplicationinhibitionandattheendofS-phase[209].

UPF1actsinthedegradationofreplication-dependenthistonemRNAs

Thereplication-dependenthistonegenesprovidethelargeamountofhistoneproteins(108moleculesofeachcorehistoneprotein)requiredforgenomeduplication[210].HistoneproteinsareproducedduringS-phaseofthecellcycleandtheirexpressionisco-ordinatelyregulatedandfinelybalancedwithDNAreplication.Threemajorpro-cesses,transcription,mRNA30endprocessingandmRNAP.Nicholsonetal.

stabilitycontrol,contributetothecomplexregulationofhistonegeneexpressionduringS-phase[211].Thiscombinationoftranscriptionalandpost-transcriptionalmechanismsactstoregulatethe35-foldincreaseofhistonemRNAlevelsascellsprogressfromG1-intoS-phaseandensuresthatthemRNAabundancereturnstobaselinelevelsasthecellsexitS-phase.Thehalf-lifeofhistonemRNAsdecreasesfrom45–60minduringS-phasetoapproximately10minattheendofS-phaseduetoareg-ulatorymechanismthatactstorapidlyeliminatehistonemRNAsfromthecytoplasmwhenDNAsynthesisiscompletedorinhibited.SincehistonegenetranscriptionisonlyincreasedthreetofivefoldduringS-phase,thepost-transcriptionalregulationaccountsfortheremainingfivetosixfoldincreaseinhistonemRNAlevelsandfortheirrapideliminationwhenDNAreplicationiscompletedorinhib-ited(reviewedin[211–213].

HistoneproductionandDNAsynthesisareintimatelycoupledbyapoorlyunderstoodmechanisminvolvingcheckpointkinases,suchasATRandDNA-activatedpro-teinkinase(DNA-PK)[214,215].Additionally,UPF1hasalsobeenreportedtoplayaroleinhistonemRNAdesta-bilisation[214–216](Table3).RNAi-mediatedknockdownofUPF1(butnotofUPF2)orover-expressionofdominant-negativeUPF1mutants(K498AandR843C)resultedinanincreasedhistoneH2AmRNAlevelafterinhibitionofDNAsynthesisbyhydroxyurea(HU)treat-mentorattheendofS-phase[214].Furthermore,aweakinteractionbetweenUPF1andthehistonestem-loopbindingprotein(SLBP;alsocalledhairpinbindingprotein,HBP)wasdetectedinimmunoprecipitationexperiments.Recently,ithasbeenrevealedthatthedegradationofhis-tonemRNAsrequiresmanyofthefactorsinvolvedindegradationofpolyadenylatedmRNA,suchasLSM1,DCP2,XRN1andtheexosomecomponentsPM/Scl-100(RRP6)andEXOSC4(RRP41)[217].Furthermore,ithasbeenreportedthathistonemRNAdegradationbeginswiththeadditionof8–12uridinesbyuridylyltransferases(TUTases)tothe30endofthehistonemRNA[217].TheconcentrationofoligouridylatedhistonemRNAsincreasedstrongly15minafterHUtreatment,andknockdownofTUTases1and3reducedtherateofhistonemRNAdeg-radation[217].UPF1hasbeenproposedtobeinvolvedintherecruitmentoftheTUTase1and3tothehistonemRNA[217].Alternatively,ithasalsobeensuggestedthattheRNAhelicaseactivityofUPF1mayremodelthemRNPcomplextoallowtheTUTasestobindthe30endofthemRNA[218].Sofar,thereisnodirectevidenceforeitheroftheserolesbyUPF1,anditsfunctioninhistonemRNAmetabolismremainsunclear.

Asmentioned,thecouplingofDNAreplicationandhistonemRNAstabilityisthoughttobemediatedbyPIKKsactingupondownstreameffectors.Inadditionto

NMDinhumancellsSMG1(alsocalledATX),themammalianPIKKsincludeATM,ATR,mTOR/FRAPandDNA-PK.CheckpointregulationinmammalsisintricateandultimatelyunevenlydividedbetweenATMandATR[219].ATM,ATRandDNA-PKareactivatedbyvariousformsofDNAdamage.ATRisactivatedbyaberrantDNAstructuresinducedbyUVlightorreplicationalstresscausedbyDNAreplicationinhibitors,bothleadingtostallingofthereplicationfork.ATMismainlyactivatedbyDSBspredominatelyafterexposuretoionisingradiation.DNA-PKisrequiredforDSBrepairbynon-homologousend-joining(NHEJ)andtelomeremaintenance.Inarecentstudy,KaygunandMarzluffreportedthatATRbutnotATMisrequiredforhistonemRNAdegradationafterinhibitionofDNArepli-cation[209].Mu

¨lleretal.reportedthatATRisnotfunctionallylimitingfortherateorextentofhistonemRNAdecayinducedbyreplicationstressandcannotfullyaccountforthecouplingbetweenDNAreplicationandhistonemRNAstability.ExposureofcellstoaninhibitorofDNA-PKunveiledDNA-PKalsotobeinvolvedinlinkinghistonemRNAabundancewithDNAreplication[215].DNA-PKisactivatedduringreplicationstressandtheDNA-PKpathwayisenhancedwhenATRsignallingfails,highlightingthecomplexnatureofsuchsignallingpath-waysandshowingthat,invivo,therelativecontributionfromeachsignallingpathwaywouldbebasedonthenatureoftheDNAlesiongeneratingthereplicationstress.SinceSMG1interactswithandphosphorylatesUPF1,andbecauseofitsresemblancetotheseotherPIKKswithdocumentedrolesinregulationofcellcycleandDNAreplication,itistemptingtospeculatethatSMG1mayalsocontributetothecomplexsignallinginvolvedinthecou-plingofDNAreplicationandhistonemRNAstability.AroleforSMG1insafeguardinggenomeintegrityThehumanmembersofthePIKKfamilyallcompriseFAT,FATCandPI3Kdomains.SMG1differsfromtheotherPIKKsbecausethePI3KdomainisseparatedfromtheFATCdomainbyalargeinsertofover1,000aminoacids,whereasonlyapproximately100aminoacidssepa-ratethesetwodomainsintheotherPIKKs[61,75,220].InC.elegansSMG1,this1,000aminoacidssectiondoesnotexist.Possibly,thisportionappearedduringmetazoanevolutionandallowsSMG1tointeractwithabroaderrangeofupstreamregulatoryproteinsanddownstreamtargets[221].Inhumancells,depletionofSMG1resultsinspontaneousDNAdamageandahugelyincreasedsensi-tivitytoionisingradiation[106](Table3).ExposureofcellstoUVlightorionisingradiationstimulatesSMG1kinaseactivity.Moreover,likeATM,SMG1isabletophosphorylatep53atserine15andexpressionofSMG1isrequiredforoptimalp53activationaftergenotoxicstress.

693

Therefore,similartoATMandATR,SMG1iscentraltotheregulationofthegenotoxicstressresponsemachineryinmammaliancells.RecentreportshavealsoimplicatedSMG1tobeimportantintheresponsetooxidativestress[222].SMG1hasbeenobservedtoinitiatep53phosphor-ylationduringtheearlystagesofoxidativestress,andATMactstomaintainthep53phosphorylationovertime.Currently,itisnotclearwhytheactivationofSMG1precedesthatofATMinhyperoxiaconditions.Experi-mentsusingcellsdepletedofATMalsoindicatedthatSMG1andATMactsequentiallyandindependentlyofeachothertoregulatetheG1-checkpointduringprolongedoxidativestress[222].Potentially,SMG1andATMmayrecogniseandrespondtodifferentlesionsthatareproducedduetoprolongedhyperoxia.Phosphorylatedp53activatestranscriptionofp21and,interestingly,itwasshownthatthedestabilisationofp21duringhyperoxiacouldberestoredbytreatmentwithwortmannin,implyingtheinvolvementofPIKKs[222].HumanSMG1andATMalsoact,independentlyofp53,totargetp21fordegradationbytheproteasome.Hence,thisdualfunctionofSMG1andATMwhichcanregulateboththesynthesisanddegrada-tionofp21,therebyfinelycontrollingthep21levelsnecessarytoinhibitcellproliferation,induceDNArepairandblockapoptosis[222].

SimilarlySMG1wasalsofoundtobeimportantinrespondingtooxidativestressinC.elegans.InastudyinvestigatinglifespanregulationinC.elegans,SMG1wasidentifiedinascreenforgenesthatprolonglifespaninadaf-18-dependentmanner[223].FurtheranalysisrevealedthattheSMG1functioninlifespancontrolrequirescep-1,theC.elegansorthologueofp53.Moreover,theroleofSMG1inlifespancontrolisduetoitsfunctioninoxidativestressresponse.Interestingly,itwasalsoreportedthatinS.pombe,Upf1pandUpf2parerequiredforsurvivalofoxidativestress[21].ToinvestigatethepossibilitythatSMG1mayhaveafunctioninstresssignallinginducedbycytokines,awiderangeofagentsthatcaninducecelldeathwereexaminedinSMG1-,ATM-,ATR-,UPF1-orUPF2-depletedcells[224].OnlydepletionofSMG1,butnotoftheotherfactors,substantiallyincreasedtherateandtheextentofapoptoticcelldeathmediatedbytumournecrosisfactor-alpha(TNF-a)[224].SMG1,likeotherPIKKs,functionstoinitiatecellularstressresponseswhengenomeintegrity,mRNAtranslationornutrientavailabilityiscompromised,andtheroleofSMG1inNMDrepresentssimplyjustoneofitsmanyroles.

Conclusionandfuturedirections

Apartfromincreasingourunderstandingofthefunda-mentalmolecularmechanismsthatcontroltheextentand

694accuracyoftheexpressionofourgeneticinformation,aprincipalgoalofstudiesonNMDistoeventuallyutilisetheknowledgeforcuringdiseasesandimprovinghealth.Inspiteofsignificantadvancesduringrecentyears,wearestillfarfromunderstandingthecompletedetailsregardinghowmRNAsarerecognisedasNMDtargets,theirsub-sequentdegradationandthephysiologicalimportanceofNMDfactorsregulatingupto10%ofthetranscriptome.TheunifiedNMDmodelmakesmanytestablepredic-tionsandwillhopefullyprovideausefulframeworkforfuturemechanisticinvestigations.Themodelemphasisestherequirementofaproperlyconfigured30UTRfornormaltranslationtermination.ThepresenceofPABPnearbyaterminatingribosomeisonecrucialcharacteristicforaproperlyconfigured30UTR,butadditionalfeaturesareexpectedtoexist.Deviationsfromthis30UTRconfigura-tionorspecificfactorsthatprohibitthetermination-promotinginteractionofPABPwiththetranslationterminationcomplexsignalsananomalyinthemRNAmoleculeandtriggersNMD.ThemechanisticdetailsofUPF1recruitmentontotheSURFcomplexanditssub-sequentassemblywiththeribosomeremaintobeworkedout.Inaddition,severalopenquestionsregardingthedeg-radationpathway(s)ofNMDsubstratesneedtobeaddressed.Forexample,doesmammalianNMDreallycomprisetwoindependentwaystoinitiateRNAdecay:anendonucleolyticSMG6-dependentrouteandadecapping-dependentexonucleolyticroute?

Finally,ithascometolightinrecentyearsthatseveralfactorswhichwereinitiallyidentifiedandcharacterisedfortheirrolesintheNMDpathwayhavehighlyimportantfunctionsinthecellthatareindependentofNMD.ItisbecomingmoreevidentthatUPF1playsmanyroleswithregardstotheregulationofS-phaseprogression,consid-eringithasbeenreportedtobeinvolvedinreplication-dependenthistonemRNAmetabolism,thereplicationmachinery,andinconjunctionwithSMG6intelomeremaintenance.Additionally,thereisanincreasedassocia-tionofUPF1ontochromatinduringS-phaseanddepletionofUPF1leadstoanearlyS-phasearrest.Likewise,therecentlyreportedfunctionsofSMG1alsoindicatethisproteintobeultimatelyrequiredforgenomestability.ItismoredifficulttorelatethefunctionofUPF1inSMDandinHIV-1RNAmetabolismtoitsS-phaseandtelomerefunctions.ItisattractivetospeculateinanevolutionarycontextaboutwhenUPF1acquiredthesefunctionsinadditiontoitsroleinNMD.Replication-dependenthis-tonesinyeastarepolyadenylatedanddonotcontainSLBP/HBP;perhapsthisiswhydepletionofUPF1isdetrimentaltohumancellsbutnottoyeastcells.AnimportantgoalforthefutureistobegintodecipherwhatconstitutesadirecteffectandanindirecteffectwhentheNMDfactorsaredepletedandgenome-widemicroarrayprofilingis

P.Nicholsonetal.

conducted.ThefuturewillalsobeaboutdeterminingtheparametersforeachofthemanydifferentrolesthatUPF1carriesout,forinstanceitscellularlocation,itsroleincellcyclecontrol,whereandwhenitisphosphorylated,whe-therthereisaspecificphosphorylationpatterndirectingUPF1toitsfunction,itsstabilityandwhereandwhenitsmanyinteractionpartnersbind.MakingsenseofallthemolecularfunctionsofUPF1willnotonlybecriticaltounderstandingthemechanismofNMD,butalsotoeluci-dationofalloftheotherprocesseswhereUPF1hasbeenfoundtoplayarole.

AcknowledgmentsTheresearchoftheauthorsissupportedbygrantsfromtheEuropeanResearchCouncil,theSwissNationalScienceFoundation,theNovartisFoundationforBiomedicalResearch,theHelmutHortenFoundationandalsobytheKanton

Bern.O.M.isafellowoftheMaxCloe

¨ttaFoundationandR.Z.O.issupportedbyafellowshipfromCONACYTMe

´xico.References

1.LossonR,LacrouteF(1979)Interferenceofnonsensemutations

witheukaryoticmessengerRNAstability.ProcNatlAcadSciUSA76:5134–5137

2.MaquatLE,KinniburghAJ,RachmilewitzEA,RossJ(1981)Unstablebeta-globinmRNAinmRNA-deficientbetaothalas-semia.Cell27:543–553

3.CulbertsonMR,LeedsPF(2003)LookingatmRNAdecaypathwaysthroughthewindowofmolecularevolution.CurrOpinGenetDev13:207–214

4.StalderL,MuhlemannO(2008)Themeaningofnonsense.TrendsCellBiol18:315–321

5.LiS,WilkinsonMF(1998)Nonsensesurveillanceinlympho-cytes?Immunity8:135–141

6.WeischenfeldtJ,DamgaardI,BryderD,Theilgaard-MonchK,ThorenLA,NielsenFC,JacobsenSE,NerlovC,PorseBT(2008)NMDisessentialforhematopoieticstemandprogenitorcellsandforeliminatingby-productsofprogrammedDNArearrangements.GenesDev22:1381–1396

7.PanQ,ShaiO,LeeLJ,FreyBJ,BlencoweBJ(2008)Deepsurveyingofalternativesplicingcomplexityinthehumantranscriptomebyhigh-throughputsequencing.NatGenet40:1413–1415

8.KimH,KleinR,MajewskiJ,OttJ(2004)Estimatingratesofalternativesplicinginmammalsandinvertebrates.NatGenet36:915–916;authorreply916–917

9.LewisBP,GreenRE,BrennerSE(2003)Evidenceforthewidespreadcouplingofalternativesplicingandnonsense-med-iatedmRNAdecayinhumans.ProcNatlAcadSciUSA100:1–192

10.IskenO,MaquatLE(2008)ThemultiplelivesofNMDfactors:

balancingrolesingeneandgenomeregulation.NatRevGenet9:699–712

11.McGlincyNJ,SmithCW(2008)Alternativesplicingresulting

innonsense-mediatedmRNAdecay:whatisthemeaningofnonsense?TrendsBiochemSci33:385–393

12.PanQ,SaltzmanAL,KimYK,MisquittaC,ShaiO,MaquatLE,

FreyBJ,BlencoweBJ(2006)Quantitativemicroarrayprofilingprovidesevidenceagainstwidespreadcouplingofalternativesplicingwithnonsense-mediatedmRNAdecaytocontrolgeneexpression.GenesDev20:153–158

NMDinhumancells

13.KuriharaY,MatsuiA,HanadaK,KawashimaM,IshidaJ,

MorosawaT,TanakaM,KaminumaE,MochizukiY,Matsu-shimaA,ToyodaT,ShinozakiK,SekiM(2009)Genome-widesuppressionofaberrantmRNA-likenoncodingRNAsbyNMDinArabidopsis.ProcNatlAcadSciUSA106:2453–2458

14.MendellJT,SharifiNA,MeyersJL,Martinez-MurilloF,Dietz

HC(2004)Nonsensesurveillanceregulatesexpressionofdiverseclassesofmammaliantranscriptsandmutesgenomicnoise.NatGenet36:1073–1078

15.MitrovichQM,AndersonP(2005)mRNAsurveillanceof

expressedpseudogenesinC.elegans.CurrBiol15:963–96716.RehwinkelJ,RaesJ,IzaurraldeE(2006)Nonsense-mediated

mRNAdecay:targetgenesandfunctionaldiversificationofeffectors.TrendsBiochemSci31:639–6

17.LeliveltMJ,CulbertsonMR(1999)YeastUpfproteinsrequired

forRNAsurveillanceaffectglobalexpressionoftheyeasttranscriptome.MolCellBiol19:6710–6719

18.HeF,LiX,SpatrickP,CasilloR,DongS,JacobsonA(2003)

Genome-wideanalysisofmRNAsregulatedbythenonsense-mediatedand50to30mRNAdecaypathwaysinyeast.MolCell12:1439–1452

19.RehwinkelJ,LetunicI,RaesJ,BorkP,IzaurraldeE(2005)

Nonsense-mediatedmRNAdecayfactorsactinconcerttoreg-ulatecommonmRNAtargets.RNA11:1530–1544

20.WittmannJ,HolEM,JackHM(2006)hUPF2silencingiden-tifiesphysiologicsubstratesofmammaliannonsense-mediatedmRNAdecay.MolCellBiol26:1272–1287

21.Rodriguez-GabrielMA,WattS,BahlerJ,RussellP(2006)

Upf1,anRNAhelicaserequiredfornonsense-mediatedmRNAdecay,modulatesthetranscriptionalresponsetooxidativestressinfissionyeast.MolCellBiol26:6347–6356

22.MoriartyPM,ReddyCC,MaquatLE(1998)Seleniumdefi-ciencyreducestheabundanceofmRNAforSe-dependentglutathioneperoxidase1byaUGA-dependentmechanismlikelytobenonsensecodon-mediateddecayofcytoplasmicmRNA.MolCellBiol18:2932–2939

23.HolbrookJA,Neu-YilikG,HentzeMW,KulozikAE(2004)

Nonsense-mediateddecayapproachestheclinic.NatGenet36:801–808

24.KhajaviM,InoueK,LupskiJR(2006)Nonsense-mediated

mRNAdecaymodulatesclinicaloutcomeofgeneticdisease.EurJHumGenet14:1074–1081

25.KuzmiakHA,MaquatLE(2006)Applyingnonsense-mediated

mRNAdecayresearchtotheclinic:progressandchallenges.TrendsMolMed12:306–316

26.KerrTP,SewryCA,RobbSA,RobertsRG(2001)Longmutant

dystrophinsandvariablephenotypes:evasionofnonsense-mediateddecay?HumGenet109:402–407

27.HallGW,TheinS(1994)Nonsensecodonmutationsinthe

terminalexonofthebeta-globingenearenotassociatedwithareductioninbeta-mRNAaccumulation:amechanismforthephenotypeofdominantbeta-thalassemia.Blood83:2031–203728.TheinSL,HeskethC,TaylorP,TemperleyIJ,HutchinsonRM,

OldJM,WoodWG,CleggJB,WeatherallDJ(1990)Molecularbasisfordominantlyinheritedinclusionbodybeta-thalassemia.ProcNatlAcadSciUSA87:3924–3928

29.DietzHC,McIntoshI,SakaiLY,CorsonGM,ChalbergSC,

PyeritzRE,FrancomanoCA(1993)FournovelFBN1muta-tions:significanceformutanttranscriptlevelandEGF-likedomaincalciumbindinginthepathogenesisofMarfansyn-drome.Genomics17:468–475

30.SalvatoreF,ScudieroO,CastaldoG(2002)Genotype-pheno-typecorrelationincysticfibrosis:theroleofmodifiergenes.AmJMedGenet111:88–95

31.JouanguyE,AltareF,LamhamediS,RevyP,EmileJF,New-portM,LevinM,BlancheS,SebounE,FischerA,CasanovaJL

695

(1996)Interferon-gamma-receptordeficiencyinaninfantwithfatalbacilleCalmette-Guerininfection.NEnglJMed335:1956–1961

32.

JouanguyE,Lamhamedi-CherradiS,LammasD,DormanSE,FondanecheMC,DupuisS,DoffingerR,AltareF,GirdlestoneJ,EmileJF,DucoulombierH,EdgarD,ClarkeJ,OxeliusVA,BraiM,NovelliV,HeyneK,FischerA,HollandSM,KumararatneDS,SchreiberRD,CasanovaJL(1999)AhumanIFNGR1smalldeletionhotspotassociatedwithdominantsusceptibilitytomycobacterialinfection.NatGenet21:370–378

33.

CardinaliM,KratochvilFJ,EnsleyJF,RobbinsKC,YeudallWA(1997)Functionalcharacterizationinvivoofmutantp53moleculesderivedfromsquamouscellcarcinomasoftheheadandneck.MolCarcinog18:78–88

34.

EnglertC,VidalM,MaheswaranS,GeY,EzzellRM,Isselb-acherKJ,HaberDA(1995)TruncatedWT1mutantsalterthesubnuclearlocalizationofthewild-typeprotein.ProcNatlAcadSciUSA92:11960–119

35.

ReddyJC,MorrisJC,WangJ,EnglishMA,HaberDA,ShiY,LichtJD(1995)WT1-mediatedtranscriptionalactivationisinhibitedbydominantnegativemutantproteins.JBiolChem270:10878–10884

36.

Perrin-VidozL,SinilnikovaOM,Stoppa-LyonnetD,LenoirGM,MazoyerS(2002)Thenonsense-mediatedmRNAdecaypathwaytriggersdegradationofmostBRCA1mRNAsbearingprematureterminationcodons.HumMolGenet11:2805–281437.

BloethnerS,MouldA,StarkM,HaywardNK(2008)Identifi-cationofARHGEF17,DENND2D,FGFR3,andRB1mutationsinmelanomabyinhibitionofnonsense-mediatedmRNAdecay.GenesChromosomesCancer47:1076–1085

38.

IvanovI,LoKC,HawthornL,CowellJK,IonovY(2007)Identifyingcandidatecoloncancertumorsuppressorgenesusinginhibitionofnonsense-mediatedmRNAdecayincoloncancercells.Oncogene26:2873–2884

39.

TarpeyPS,LucyRaymondF,NguyenLS,RodriguezJ,HackettA,VandeleurL,SmithR,ShoubridgeC,EdkinsS,StevensC,O’MearaS,ToftsC,BarthorpeS,BuckG,ColeJ,HallidayK,HillsK,JonesD,MironenkoT,PerryJ,VarianJ,WestS,WidaaS,TeagueJ,DicksE,ButlerA,MenziesA,RichardsonD,JenkinsonA,ShepherdR,RaineK,MoonJ,LuoY,ParnauJ,BhatSS,GardnerA,CorbettM,BrooksD,ThomasP,Parkin-son-LawrenceE,PorteousME,WarnerJP,SandersonT,PearsonP,SimensenRJ,SkinnerC,HogansonG,SuperneauD,WoosterR,BobrowM,TurnerG,StevensonRE,SchwartzCE,AndrewFutrealP,SrivastavaAK,StrattonMR,GeczJ(2007)MutationsinUPF3B,amemberofthenonsense-mediatedmRNAdecaycomplex,causesyndromicandnonsyndromicmentalretardation.NatGenet39:1127–1133

40.KeremE(2004)Pharmacologictherapyforstopmutations:howmuchCFTRactivityisenough?CurrOpinPulmMed10:547–552

41.

RamalhoAS,BeckS,MeyerM,PenqueD,CuttingGR,AmaralMD(2002)Fivepercentofnormalcysticfibrosistransmem-braneconductanceregulatormRNAamelioratestheseverityofpulmonarydiseaseincysticfibrosis.AmJRespirCellMolBiol27:619–627

42.StephensonJ(2001)Antibioticsshowpromiseastherapyforgeneticdisorders.JAMA285:2067–2068

43.

ClancyJP,BebokZ,RuizF,KingC,JonesJ,WalkerL,GreerH,HongJ,WingL,MacalusoM,LyreneR,SorscherEJ,Be-dwellDM(2001)Evidencethatsystemicgentamicinsuppressesprematurestopmutationsinpatientswithcysticfibrosis.AmJRespirCritCareMed163:1683–1692

44.

WilschanskiM,FaminiC,BlauH,RivlinJ,AugartenA,AvitalA,KeremB,KeremE(2000)Apilotstudyoftheeffectofgentamicinonnasalpotentialdifferencemeasurementsincystic

696

fibrosispatientscarryingstopmutations.AmJRespirCritCareMed161:860–865

45.

WelchEM,BartonER,ZhuoJ,TomizawaY,FriesenWJ,TrifillisP,PaushkinS,PatelM,TrottaCR,HwangS,WildeRG,KarpG,TakasugiJ,ChenG,JonesS,RenH,MoonYC,CorsonD,TurpoffAA,CampbellJA,ConnMM,KhanA,AlmsteadNG,HedrickJ,MollinA,RisherN,WeetallM,YehS,Bran-stromAA,ColacinoJM,BabiakJ,JuWD,HirawatS,NorthcuttVJ,MillerLL,SpatrickP,HeF,KawanaM,FengH,JacobsonA,PeltzSW,SweeneyHL(2007)PTC124targetsgeneticdis-orderscausedbynonsensemutations.Nature447:87–91

46.

KeremE,HirawatS,ArmoniS,YaakovY,ShoseyovD,CohenM,Nissim-RafiniaM,BlauH,RivlinJ,AviramM,ElfringGL,NorthcuttVJ,MillerLL,KeremB,WilschanskiM(2008)EffectivenessofPTC124treatmentofcysticfibrosiscausedbynonsensemutations:aprospectivephaseIItrial.Lancet372:719–727

47.CulbertsonMR,UnderbrinkKM,FinkGR(1980)FrameshiftsuppressioninSaccharomycescerevisiae.II.GeneticpropertiesofgroupIIsuppressors.Genetics95:833–853

48.

LeedsP,PeltzSW,JacobsonA,CulbertsonMR(1991)TheproductoftheyeastUPF1geneisrequiredforrapidturnoverofmRNAscontainingaprematuretranslationalterminationcodon.GenesDev5:2303–2314

49.LeedsP,WoodJM,LeeBS,CulbertsonMR(1992)GeneproductsthatpromotemRNAturnoverinSaccharomycesce-revisiae.MolCellBiol12:2165–2177

50.HeF,JacobsonA(1995)Identificationofanovelcomponentofthenonsense-mediatedmRNAdecaypathwaybyuseofaninteractingproteinscreen.GenesDev9:437–454

51.HodgkinJ,PappA,PulakR,AmbrosV,AndersonP(19)AnewkindofinformationalsuppressioninthenematodeCae-norhabditiselegans.Genetics123:301–313

52.PulakR,AndersonP(1993)mRNAsurveillancebytheCae-norhabditiseleganssmggenes.GenesDev7:1885–17

53.CaliBM,KuchmaSL,LathamJ,AndersonP(1999)smg-7isrequiredformRNAsurveillanceinCaenorhabditiselegans.Genetics151:605–616

54.

ApplequistSE,SelgM,RamanC,JackHM(1997)CloningandcharacterizationofHUPF1,ahumanhomologoftheSaccha-romycescerevisiaenonsensemRNA-reducingUPF1protein.NucleicAcidsRes25:814–821

55.

DenningG,JamiesonL,MaquatLE,ThompsonEA,FieldsAP(2001)Cloningofanovelphosphatidylinositolkinase-relatedkinase:characterizationofthehumanSMG-1RNAsurveillanceprotein.JBiolChem276:22709–22714

56.Lykke-AndersenJ,ShuMD,SteitzJA(2000)HumanUpfproteinstargetanmRNAfornonsense-mediateddecaywhenbounddownstreamofaterminationcodon.Cell103:1121–113157.

MendellJT,MedghalchiSM,LakeRG,NoensieEN,DietzHC(2000)NovelUpf2porthologuessuggestafunctionallinkbetweentranslationinitiationandnonsensesurveillancecom-plexes.MolCellBiol20:44–57

58.

OhnishiT,YamashitaA,KashimaI,SchellT,AndersKR,GrimsonA,HachiyaT,HentzeMW,AndersonP,OhnoS(2003)PhosphorylationofhUPF1inducesformationofmRNAsurveillancecomplexescontaininghSMG-5andhSMG-7.MolCell12:1187–1200

59.

PerlickHA,MedghalchiSM,SpencerFA,KendziorRJJr,DietzHC(1996)Mammalianorthologuesofayeastregulatorofnonsensetranscriptstability.ProcNatlAcadSciUSA93:10928–10932

60.

SerinG,GersappeA,BlackJD,AronoffR,MaquatLE(2001)IdentificationandcharacterizationofhumanorthologuestoSaccharomycescerevisiaeUpf2proteinandUpf3protein(CaenorhabditiselegansSMG-4).MolCellBiol21:209–223

P.Nicholsonetal.

61.YamashitaA,OhnishiT,KashimaI,TayaY,OhnoS(2001)

HumanSMG-1,anovelphosphatidylinositol3-kinase-relatedproteinkinase,associateswithcomponentsofthemRNAsur-veillancecomplexandisinvolvedintheregulationofnonsense-mediatedmRNAdecay.GenesDev15:2215–2228

62.LongmanD,PlasterkRH,JohnstoneIL,CaceresJF(2007)

MechanisticinsightsandidentificationoftwonovelfactorsintheC.elegansNMDpathway.GenesDev21:1075–1085

63.YamashitaA,IzumiN,KashimaI,OhnishiT,SaariB,Ka-tsuhataY,MuramatsuR,MoritaT,IwamatsuA,HachiyaT,KurataR,HiranoH,AndersonP,OhnoS(2009)SMG-8andSMG-9,twonovelsubunitsoftheSMG-1complex,regulateremodelingofthemRNAsurveillancecomplexduringnon-sense-mediatedmRNAdecay.GenesDev23:1091–1105

.GatfieldD,UnterholznerL,CiccarelliFD,BorkP,IzaurraldeE

(2003)Nonsense-mediatedmRNAdecayinDrosophila:attheintersectionoftheyeastandmammalianpathways.EMBOJ22:3960–3970

65.LukeB,AzzalinCM,HugN,DeplazesA,PeterM,LingnerJ

(2007)SaccharomycescerevisiaeEbs1pisaputativeorthologofhumanSmg7andpromotesnonsense-mediatedmRNAdecay.NucleicAcidsRes35:7688–7697

66.PageMF,CarrB,AndersKR,GrimsonA,AndersonP(1999)

SMG-2isaphosphorylatedproteinrequiredformRNAsur-veillanceinCaenorhabditiselegansandrelatedtoUpf1pofyeast.MolCellBiol19:5943–5951

67.BhattacharyaA,CzaplinskiK,TrifillisP,HeF,JacobsonA,

PeltzSW(2000)CharacterizationofthebiochemicalpropertiesofthehumanUpf1geneproductthatisinvolvedinnonsense-mediatedmRNAdecay.RNA6:1226–1235

68.CzaplinskiK,WengY,HaganKW,PeltzSW(1995)Purifica-tionandcharacterizationoftheUpf1protein:afactorinvolvedintranslationandmRNAdegradation.RNA1:610–623

69.ChengZ,MuhlradD,LimMK,ParkerR,SongH(2007)

StructuralandfunctionalinsightsintothehumanUpf1helicasecore.EMBOJ26:253–2

70.ClericiM,MouraoA,GutscheI,GehringNH,HentzeMW,

KulozikA,KadlecJ,SattlerM,CusackS(2009)Unusualbipartitemodeofinteractionbetweenthenonsense-mediateddecayfactors,UPF1andUPF2.EMBOJ28:2293–2306

71.KadlecJ,GuilligayD,RavelliRB,CusackS(2006)Crystal

structureoftheUPF2-interactingdomainofnonsense-mediatedmRNAdecayfactorUPF1.RNA12:1817–1824

72.CzaplinskiK,Ruiz-EchevarriaMJ,PaushkinSV,HanX,Weng

Y,PerlickHA,DietzHC,Ter-AvanesyanMD,PeltzSW(1998)ThesurveillancecomplexinteractswiththetranslationreleasefactorstoenhanceterminationanddegradeaberrantmRNAs.GenesDev12:1665–1677

73.IvanovPV,GehringNH,KunzJB,HentzeMW,KulozikAE

(2008)InteractionsbetweenUPF1,eRFs,PABPandtheexonjunctioncomplexsuggestanintegratedmodelformammalianNMDpathways.EMBOJ27:736–747

74.KashimaI,YamashitaA,IzumiN,KataokaN,MorishitaR,

HoshinoS,OhnoM,DreyfussG,OhnoS(2006)BindingofanovelSMG-1-Upf1-eRF1-eRF3complex(SURF)totheexonjunctioncomplextriggersUpf1phosphorylationandnonsense-mediatedmRNAdecay.GenesDev20:355–367

75.GrimsonA,O’ConnorS,NewmanCL,AndersonP(2004)

SMG-1isaphosphatidylinositolkinase-relatedproteinkinaserequiredfornonsense-mediatedmRNADecayinCaenorhab-ditiselegans.MolCellBiol24:7483–7490

76.ChanWK,HuangL,GudikoteJP,ChangYF,ImamJS,Ma-cLeanJA2nd,WilkinsonMF(2007)Analternativebranchofthenonsense-mediateddecaypathway.EMBOJ26:1820–183077.GehringNH,KunzJB,Neu-YilikG,BreitS,ViegasMH,

HentzeMW,KulozikAE(2005)Exon-junctioncomplex

NMDinhumancells

componentsspecifydistinctroutesofnonsense-mediatedmRNAdecaywithdifferentialcofactorrequirements.MolCell20:65–75

78.

GehringNH,LamprinakiS,HentzeMW,KulozikAE(2009)Thehierarchyofexon-junctioncomplexassemblybythespliceosomeexplainskeyfeaturesofmammaliannonsense-mediatedmRNAdecay.PLoSBiol7:e1000120

79.

SaltzmanAL,KimYK,PanQ,FagnaniMM,MaquatLE,BlencoweBJ(2008)Regulationofmultiplecorespliceosomalproteinsbyalternativesplicing-couplednonsense-mediatedmRNAdecay.MolCellBiol28:4320–4330

80.AndersKR,GrimsonA,AndersonP(2003)SMG-5,requiredforC.elegansnonsense-mediatedmRNAdecay,associateswithSMG-2andproteinphosphatase2A.EMBOJ22:1–65081.

ChiuSY,SerinG,OharaO,MaquatLE(2003)CharacterizationofhumanSmg5/7a:AproteinwithsimilaritiestoCaenorhab-ditiselegansSMG5andSMG7thatfunctionsinthedephosphorylationofUpf1.RNA9:77–87

82.

WangW,CajigasIJ,PeltzSW,WilkinsonMF,GonzalezCI(2006)RoleforUpf2pphosphorylationinSaccharomycescerevisiaenonsense-mediatedmRNAdecay.MolCellBiol26:3390–3400

83.HeF,BrownAH,JacobsonA(1997)Upf1p,Nmd2p,andUpf3pareinteractingcomponentsoftheyeastnonsense-mediatedmRNAdecaypathway.MolCellBiol17:1580–1594

84.

WengY,CzaplinskiK,PeltzSW(1996)IdentificationandcharacterizationofmutationsintheUPF1genethataffectnonsensesuppressionandtheformationoftheUpfproteincomplexbutnotmRNAturnover.MolCellBiol16:5491–550685.KadlecJ,IzaurraldeE,CusackS(2004)Thestructuralbasisfortheinteractionbetweennonsense-mediatedmRNAdecayfactorsUPF2andUPF3.NatStructMolBiol11:330–337

86.

SchellT,KocherT,WilmM,SeraphinB,KulozikAE,HentzeMW(2003)Complexesbetweenthenonsense-mediatedmRNAdecaypathwayfactorhumanupf1(up-frameshiftprotein1)andessentialnonsense-mediatedmRNAdecayfactorsinHeLacells.BiochemJ373:775–783

87.ChanWK,BhallaAD,LeHirH,NguyenLS,HuangL,GeczJ,WilkinsonMF(2009)AUPF3-mediatedregulatoryswitchthatmaintainsRNAsurveillance.NatStructMolBiol16:747–75388.KunzJB,Neu-YilikG,HentzeMW,KulozikAE,GehringNH(2006)FunctionsofhUpf3aandhUpf3binnonsense-mediatedmRNAdecayandtranslation.Rna12:1015–1022

.

LeHirH,GatfieldD,IzaurraldeE,MooreMJ(2001)Theexon-exonjunctioncomplexprovidesabindingplatformforfactorsinvolvedinmRNAexportandnonsense-mediatedmRNAdecay.EMBOJ20:4987–4997

90.

AndersenCB,BallutL,JohansenJS,ChamiehH,NielsenKH,OliveiraCL,PedersenJS,SeraphinB,LeHirH,AndersenGR(2006)StructureoftheexonjunctioncorecomplexwithatrappedDEAD-boxATPaseboundtoRNA.Science313:1968–197291.BonoF,EbertJ,LorentzenE,ContiE(2006)ThecrystalstructureoftheexonjunctioncomplexrevealshowitmaintainsastablegriponmRNA.Cell126:713–725

92.

ChamiehH,BallutL,BonneauF,LeHirH(2008)NMDfactorsUPF2andUPF3bridgeUPF1totheexonjunctioncomplexandstimulateitsRNAhelicaseactivity.NatStructMolBiol15:85–93

93.KimVN,KataokaN,DreyfussG(2001)Roleofthenonsense-mediateddecayfactorhUpf3inthesplicing-dependentexon–exonjunctioncomplex.Science293:1832–1836

94.YamashitaA,KashimaI,OhnoS(2005)TheroleofSMG-1innonsense-mediatedmRNAdecay.BiochimBiophysActa1754:305–315

95.

D’AndreaLD,ReganL(2003)TPRproteins:theversatilehelix.TrendsBiochemSci28:655–662

697

96.FukuharaN,EbertJ,UnterholznerL,LindnerD,IzaurraldeE,

ContiE(2005)SMG7isa14–3-3-likeadaptorinthenonsense-mediatedmRNAdecaypathway.MolCell17:537–547

97.UnterholznerL,IzaurraldeE(2004)SMG7actsasamolecular

linkbetweenmRNAsurveillanceandmRNAdecay.MolCell16:587–596

98.ClissoldPM,PontingCP(2000)PINdomainsinnonsense-mediatedmRNAdecayandRNAi.CurrBiol10:R888–R099.GlavanF,Behm-AnsmantI,IzaurraldeE,ContiE(2006)

StructuresofthePINdomainsofSMG6andSMG5revealanucleasewithinthemRNAsurveillancecomplex.EMBOJ25:5117–5125

100.EberleAB,Lykke-AndersenS,MuhlemannO,JensenTH

(2009)SMG6promotesendonucleolyticcleavageofnonsensemRNAinhumancells.NatStructMolBiol16:49–55

101.HuntzingerE,KashimaI,FauserM,SauliereJ,IzaurraldeE

(2008)SMG6isthecatalyticendonucleasethatcleavesmRNAscontainingnonsensecodonsinmetazoan.RNA14:2609–2617102.MendellJT,apRhysCM,DietzHC(2002)Separablerolesfor

rent1/hUpf1inalteredsplicinganddecayofnonsensetran-scripts.Science298:419–422

103.AzzalinCM,LingnerJ(2006)ThehumanRNAsurveillance

factorUPF1isrequiredforSphaseprogressionandgenomestability.CurrBiol16:433–439

104.AzzalinCM,ReichenbachP,KhoriauliL,GiulottoE,LingnerJ

(2007)TelomericrepeatcontainingRNAandRNAsurveillancefactorsatmammalianchromosomeends.Science318:798–801105.DurandS,CougotN,Mahuteau-BetzerF,NguyenCH,Grierson

DS,BertrandE,TaziJ,LejeuneF(2007)Inhibitionofnonsense-mediatedmRNAdecay(NMD)byanewchemicalmoleculerevealsthedynamicofNMDfactorsinP-bodies.JCellBiol178:1145–1160

106.BrumbaughKM,OtternessDM,GeisenC,OliveiraV,Brognard

J,LiX,LejeuneF,TibbettsRS,MaquatLE,AbrahamRT(2004)ThemRNAsurveillanceproteinhSMG-1functionsingenotoxicstressresponsepathwaysinmammaliancells.MolCell14:585–598

107.KimSH,KorolevaOA,LewandowskaD,PendleAF,ClarkGP,

SimpsonCG,ShawPJ,BrownJW(2009)AberrantmRNAtranscriptsandthenonsense-mediateddecayproteinsUPF2andUPF3areenrichedintheArabidopsisnucleolus.PlantCell21:2045–2057

108.HillerenP,ParkerR(1999)mRNAsurveillanceineukaryotes:

kineticproofreadingofpropertranslationterminationasasses-sedbymRNPdomainorganization?RNA5:711–719

109.AmraniN,SachsMS,JacobsonA(2006)Earlynonsense:

mRNAdecaysolvesatranslationalproblem.NatRevMolCellBiol7:415–425

110.MuhlemannO,EberleAB,StalderL,ZamudioOrozcoR(2008)

RecognitionandeliminationofnonsensemRNA.BiochimBiophysActa1779:538–549

111.StansfieldI,JonesKM,KushnirovVV,DagkesamanskayaAR,

PoznyakovskiAI,PaushkinSV,NierrasCR,CoxBS,Ter-Av-anesyanMD,TuiteMF(1995)TheproductsoftheSUP45(eRF1)andSUP35genesinteracttomediatetranslationtermi-nationinSaccharomycescerevisiae.EMBOJ14:4365–4373112.ZhouravlevaG,FrolovaL,LeGoffX,LeGuellecR,Inge-VechtomovS,KisselevL,PhilippeM(1995)Terminationoftranslationineukaryotesisgovernedbytwointeractingpoly-peptidechainreleasefactors,eRF1andeRF3.EMBOJ14:4065–4072

113.FrolovaL,LeGoffX,RasmussenHH,ChepereginS,Drugeon

G,KressM,ArmanI,HaenniAL,CelisJE,PhilippeM,JustesenJ,KisselevL(1994)Ahighlyconservedeukaryoticproteinfamilypossessingpropertiesofpolypeptidechainreleasefactor.Nature372:701–703

698

114.CossonB,BerkovaN,CouturierA,ChabelskayaS,PhilippeM,

ZhouravlevaG(2002)Poly(A)-bindingproteinandeRF3areassociatedinvivoinhumanandXenopuscells.BiolCell94:205–216

115.HoshinoS,ImaiM,KobayashiT,UchidaN,KatadaT(1999)

Theeukaryoticpolypeptidechainreleasingfactor(eRF3/GSPT)carryingthetranslationterminationsignaltothe3’-Poly(A)tailofmRNA.Directassociationoferf3/GSPTwithpolyadenylate-bindingprotein.JBiolChem274:16677–16680

116.KozlovG,TrempeJF,KhaleghpourK,KahvejianA,EkielI,

GehringK(2001)StructureandfunctionoftheC-terminalPABCdomainofhumanpoly(A)-bindingprotein.ProcNatlAcadSciUSA98:4409–4413

117.MangusDA,EvansMC,JacobsonA(2003)Poly(A)-binding

proteins:multifunctionalscaffoldsforthepost-transcriptionalcontrolofgeneexpression.GenomeBiol4:223

118.AmraniN,GanesanR,KervestinS,MangusDA,GhoshS,

JacobsonA(2004)Afaux30-UTRpromotesaberranttermina-tionandtriggersnonsense-mediatedmRNAdecay.Nature432:112–118

119.SinghG,RebbapragadaI,Lykke-AndersenJ(2008)Acompe-titionbetweenstimulatorsandantagonistsofUpfcomplexrecruitmentgovernshumannonsense-mediatedmRNAdecay.PLoSBiol6:e111

120.Behm-AnsmantI,GatfieldD,RehwinkelJ,HilgersV,Izaurr-aldeE(2007)Aconservedroleforcytoplasmicpoly(A)-bindingprotein1(PABPC1)innonsense-mediatedmRNAdecay.EMBOJ26:1591–1601

121.EberleAB,StalderL,MathysH,OrozcoRZ,MuhlemannO

(2008)Posttranscriptionalgeneregulationbyspatialrearrange-mentofthe30untranslatedregion.PLoSBiol6:e92

122.SilvaAL,RibeiroP,InacioA,LiebhaberSA,RomaoL(2008)

Proximityofthepoly(A)-bindingproteintoaprematuretermi-nationcodoninhibitsmammaliannonsense-mediatedmRNAdecay.RNA14:563–576

123.KebaaraBW,AtkinAL(2009)Long30-UTRstargetwild-type

mRNAsfornonsense-mediatedmRNAdecayinSaccharomycescerevisiae.NucleicAcidsRes37:2771–2778

124.KerenyiZ,MeraiZ,HiripiL,BenkovicsA,GyulaP,Lacomme

C,BartaE,NagyF,SilhavyD(2008)Inter-kingdomconser-vationofmechanismofnonsense-mediatedmRNAdecay.EMBOJ27:1585–1595

125.KerteszS,KerenyiZ,MeraiZ,BartosI,PalfyT,BartaE,Sil-havyD(2006)Bothintronsandlong3’-UTRsoperateascis-actingelementstotriggernonsense-mediateddecayinplants.NucleicAcidsRes34:6147–6157

126.MuhlradD,ParkerR(1999)AberrantmRNAswithextended3

‘UTRsaresubstratesforrapiddegradationbymRNAsurveil-lance.RNA5:1299–1307

127.PeltzSW,BrownAH,JacobsonA(1993)mRNAdestabilization

triggeredbyprematuretranslationalterminationdependsonatleastthreecis-actingsequenceelementsandonetrans-actingfactor.GenesDev7:1737–1754

128.Ruiz-EchevarriaMJ,GonzalezCI,PeltzSW(1998)Identifying

therightstop:determininghowthesurveillancecomplexrec-ognizesanddegradesanaberrantmRNA.EMBOJ17:575–5129.LeHirH,IzaurraldeE,MaquatLE,MooreMJ(2000)The

spliceosomedepositsmultipleproteins20–24nucleotidesupstreamofmRNAexon-exonjunctions.EMBOJ19:6860–6869130.LeHirH,MooreMJ,MaquatLE(2000)Pre-mRNAsplicing

altersmRNPcomposition:evidenceforstableassociationofproteinsatexon-exonjunctions.GenesDev14:1098–1108131.ThermannR,Neu-YilikG,DetersA,FredeU,WehrK,

HagemeierC,HentzeMW,KulozikAE(1998)Binaryspecifi-cationofnonsensecodonsbysplicingandcytoplasmictranslation.EMBOJ17:3484–3494

P.Nicholsonetal.

132.ZhangJ,SunX,QianY,LaDucaJP,MaquatLE(1998)Atleast

oneintronisrequiredforthenonsense-mediateddecayoftri-osephosphateisomerasemRNA:apossiblelinkbetweennuclearsplicingandcytoplasmictranslation.MolCellBiol18:5272–5283

133.ZhangJ,SunX,QianY,MaquatLE(1998)Intronfunctionin

thenonsense-mediateddecayofbeta-globinmRNA:indicationsthatpre-mRNAsplicinginthenucleuscaninfluencemRNAtranslationinthecytoplasm.RNA4:801–815

134.GehringNH,LamprinakiS,KulozikAE,HentzeMW(2009)

DisassemblyofexonjunctioncomplexesbyPYM.Cell137:536–548

135.BuzinaA,ShulmanMJ(1999)Infrequenttranslationofanon-sensecodonissufficienttodecreasemRNAlevel.MolBiolCell10:515–524

136.InacioA,SilvaAL,PintoJ,JiX,MorgadoA,AlmeidaF,

FaustinoP,LavinhaJ,LiebhaberSA,RomaoL(2004)Nonsensemutationsincloseproximitytotheinitiationcodonfailtotriggerfullnonsense-mediatedmRNAdecay.JBiolChem279:32170–32180

137.RomaoL,InacioA,SantosS,AvilaM,FaustinoP,PachecoP,

LavinhaJ(2000)Nonsensemutationsinthehumanbeta-globingeneleadtounexpectedlevelsofcytoplasmicmRNAaccu-mulation.Blood96:25–2901

138.ZhangJ,MaquatLE(1997)Evidencethattranslationreinitiation

abrogatesnonsense-mediatedmRNAdecayinmammaliancells.EMBOJ16:826–833

139.TarunSZJr,SachsAB(1996)Associationoftheyeastpoly(A)

tailbindingproteinwithtranslationinitiationfactoreIF-4G.EMBOJ15:7168–7177

140.TarunSZJr,WellsSE,DeardorffJA,SachsAB(1997)Trans-lationinitiationfactoreIF4Gmediatesinvitropoly(A)tail-dependenttranslation.ProcNatlAcadSciUSA94:9046–9051141.SilvaAL,RomaoL(2009)Themammaliannonsense-mediated

mRNAdecaypathway:todecayornottodecay!Whichplayersmakethedecision?FEBSLett583:499–505

142.IshigakiY,LiX,SerinG,MaquatLE(2001)Evidencefora

pioneerroundofmRNAtranslation.mRNAssubjecttonon-sense-mediateddecayinmammaliancellsareboundbyCBP80andCBP20.Cell106:607–617

143.ChiuSY,LejeuneF,RanganathanAC,MaquatLE(2004)The

pioneertranslationinitiationcomplexisfunctionallydistinctfrombutstructurallyoverlapswiththesteady-statetranslationinitiationcomplex.GenesDev18:745–754

144.HosodaN,KimYK,LejeuneF,MaquatLE(2005)CBP80

promotesinteractionofUpf1withUpf2duringnonsense-med-iatedmRNAdecayinmammaliancells.NatStructMolBiol12:3–901

145.GaoQ,DasB,ShermanF,MaquatLE(2005)Cap-binding

protein1-mediatedandeukaryotictranslationinitiationfactor4E-mediatedpioneerroundsoftranslationinyeast.ProcNatlAcadSciUSA102:4258–4263

146.MaderazoAB,BelkJP,HeF,JacobsonA(2003)Nonsense-containingmRNAsthataccumulateintheabsenceofafunc-tionalnonsense-mediatedmRNAdecaypathwayaredestabilizedrapidlyuponitsrestitution.MolCellBiol23:842–851

147.KuperwasserN,BrognaS,DowerK,RosbashM(2004)Non-sense-mediateddecaydoesnotoccurwithintheyeastnucleus.RNA10:1907–1915

148.BrognaS,WenJ(2009)Nonsense-mediatedmRNAdecay

(NMD)mechanisms.NatStructMolBiol16:107–113

149.GarneauNL,WiluszJ,WiluszCJ(2007)Thehighwaysand

bywaysofmRNAdecay.NatRevMolCellBiol8:113–126150.MeyerS,TemmeC,WahleE(2004)MessengerRNAturnover

ineukaryotes:pathwaysandenzymes.CritRevBiochemMolBiol39:197–216

NMDinhumancells

151.CollerJ,ParkerR(2004)EukaryoticmRNAdecapping.Annu

RevBiochem73:861–0

152.ParkerR,SongH(2004)Theenzymesandcontrolofeukaryotic

mRNAturnover.NatStructMolBiol11:121–127

153.YamashitaA,ChangTC,YamashitaY,ZhuW,ZhongZ,Chen

CY,ShyuAB(2005)Concertedactionofpoly(A)nucleasesanddecappingenzymeinmammalianmRNAturnover.NatStructMolBiol12:1054–1063

154.SchmidM,JensenTH(2008)Theexosome:amultipurpose

RNA-decaymachine.TrendsBiochemSci33:501–510

155.CaoD,ParkerR(2003)Computationalmodelingandexperi-mentalanalysisofnonsense-mediateddecayinyeast.Cell113:533–545

156.MuhlradD,ParkerR(1994)Prematuretranslationaltermination

triggersmRNAdecapping.Nature370:578–581

157.MitchellP,TollerveyD(2003)AnNMDpathwayinyeast

involvingaccelerateddeadenylationandexosome-mediated30-[50degradation.MolecularCell11:1405–1413

158.GatfieldD,IzaurraldeE(2004)Nonsense-mediatedmessenger

RNAdecayisinitiatedbyendonucleolyticcleavageinDro-sophila.Nature429:575–578

159.CouttetP,GrangeT(2004)Prematureterminationcodons

enhancemRNAdecappinginhumancells.NucleicAcidsRes32:488–494

160.LejeuneF,LiX,MaquatLE(2003)Nonsense-mediatedmRNA

decayinmammaliancellsinvolvesdecapping,deadenylating,andexonucleolyticactivities.MolCell12:675–687

161.ChenCY,ShyuAB(2003)Rapiddeadenylationtriggeredbya

nonsensecodonprecedesdecayoftheRNAbodyinamam-maliancytoplasmicnonsense-mediateddecaypathway.MolCellBiol23:4805–4813

162.ChoH,KimKM,KimYK(2009)Humanproline-richnuclear

receptorcoregulatoryprotein2mediatesaninteractionbetweenmRNAsurveillancemachineryanddecappingcomplex.MolCell33:75–86

163.FranksTM,Lykke-AndersenJ(2008)ThecontrolofmRNA

decappingandP-bodyformation.MolCell32:605–615

1.EulalioA,Behm-AnsmantI,IzaurraldeE(2007)Pbodies:atthe

crossroadsofpost-transcriptionalpathways.NatRevMolCellBiol8:9–22

165.ParkerR,ShethU(2007)PbodiesandthecontrolofmRNA

translationanddegradation.MolCell25:635–6

166.ZhengD,EzzeddineN,ChenCY,ZhuW,HeX,ShyuAB

(2008)DeadenylationisprerequisiteforP-bodyformationandmRNAdecayinmammaliancells.JCellBiol182:–101167.ShethU,ParkerR(2006)TargetingofaberrantmRNAsto

cytoplasmicprocessingbodies.Cell125:1095–1109

168.EulalioA,Behm-AnsmantI,SchweizerD,IzaurraldeE(2007)

P-bodyformationisaconsequence,notthecause,ofRNA-mediatedgenesilencing.MolCellBiol27:3970–3981

169.StalderL,MuhlemannO(2009)Processingbodiesarenot

requiredformammaliannonsense-mediatedmRNAdecay.RNA15:1265–1273

170.MetzsteinMM,KrasnowMA(2006)Functionsofthenonsense-mediatedmRNAdecaypathwayinDrosophiladevelopment.PLoSGenet2:e180

171.WittkoppN,HuntzingerE,WeilerC,SauliereJ,SchmidtS,

SonawaneM,IzaurraldeE(2009)Nonsense-mediatedmRNAdecayeffectorsareessentialforzebrafishembryonicdevelop-mentandsurvival.MolCellBiol29:3517–3528

172.MedghalchiSM,FrischmeyerPA,MendellJT,KellyAG,

LawlerAM,DietzHC(2001)Rent1,atrans-effectorofnon-sense-mediatedmRNAdecay,isessentialformammalianembryonicviability.HumMolGenet10:99–105

173.YoineM,NishiiT,NakamuraK(2006)ArabidopsisUPF1RNA

helicasefornonsense-mediatedmRNAdecayisinvolvedinseed

699

sizecontrolandisessentialforgrowth.PlantCellPhysiol47:572–580

174.BaronC,HeiderJ,BockA(1993)InteractionoftranslationfactorSELBwiththeformatedehydrogenaseHselenopoly-peptidemRNA.ProcNatlAcadSciUSA90:4181–4185

175.CabanK,CopelandPR(2006)Sizematters:aviewofseleno-cysteineincorporationfromtheribosome.CellMolLifeSci63:73–81

176.

DonovanJ,CabanK,RanaweeraR,Gonzalez-FloresJN,Co-pelandPR(2008)Anovelproteindomaininduceshighaffinityselenocysteineinsertionsequencebindingandelongationfactorrecruitment.JBiolChem283:35129–35139

177.

GuptaM,CopelandPR(2007)Functionalanalysisoftheinterplaybetweentranslationtermination,selenocysteinecodoncontext,andselenocysteineinsertionsequence-bindingprotein2.JBiolChem282:36797–36807

178.WenW,WeissSL,SundeRA(1998)UGAcodonpositionaffectstheefficiencyofselenocysteineincorporationintoglu-tathioneperoxidase-1.JBiolChem273:28533–28541

179.HowardMT,MoyleMW,AggarwalG,CarlsonBA,AndersonCB(2007)ArecodingelementthatstimulatesdecodingofUGAcodonsbySectRNA[Ser]Sec.RNA13:912–920

180.

SunX,LiX,MoriartyPM,HenicsT,LaDucaJP,MaquatLE(2001)Nonsense-mediateddecayofmRNAfortheselenopro-teinphospholipidhydroperoxideglutathioneperoxidaseisdetectableinculturedcellsbutmaskedorinhibitedinrattissues.MolBiolCell12:1009–1017

181.

BermanoG,NicolF,DyerJA,SundeRA,BeckettGJ,ArthurJR,HeskethJE(1995)Tissue-specificregulationofselenoen-zymegeneexpressionduringseleniumdeficiencyinrats.BiochemJ311:425–430

182.StJohnstonD,BeuchleD,Nusslein-VolhardC(1991)Staufen,agenerequiredtolocalizematernalRNAsintheDrosophilaegg.Cell66:51–63

183.StJohnstonD(2001)Thebeginningoftheend.EMBOJ20:6169–6179

184.

FerrandonD,ElphickL,Nusslein-VolhardC,StJohnstonD(1994)Staufenproteinassociateswiththe30UTRofbicoidmRNAtoformparticlesthatmoveinamicrotubule-dependentmanner.Cell79:1221–1232

185.Kim-HaJ,KerrK,MacdonaldPM(1995)Translationalregu-lationofoskarmRNAbybruno,anovarianRNA-bindingprotein,isessential.Cell81:403–412

186.

MarionRM,FortesP,BelosoA,DottiC,OrtinJ(1999)AhumansequencehomologueofStaufenisanRNA-bindingproteinthatisassociatedwithpolysomesandlocalizestotheroughendoplasmicreticulum.MolCellBiol19:2212–2219187.

WickhamL,DuchaineT,LuoM,NabiIR,DesGroseillersL(1999)Mammalianstaufenisadouble-stranded-RNA-andtubulin-bindingproteinwhichlocalizestotheroughendoplas-micreticulum.MolCellBiol19:2220–2230

188.KimYK,FuricL,DesgroseillersL,MaquatLE(2005)Mam-malianStaufen1recruitsUpf1tospecificmRNA30UTRssoastoelicitmRNAdecay.Cell120:195–208

1.KimYK,FuricL,ParisienM,MajorF,DesGroseillersL,MaquatLE(2007)Staufen1regulatesdiverseclassesofmam-maliantranscripts.EMBOJ26:2670–2681

190.

FuricL,Maher-LaporteM,DesGroseillersL(2008)Agenome-wideapproachidentifiesdistinctbutoverlappingsubsetsofcellularmRNAsassociatedwithStaufen1-andStaufen2-con-tainingribonucleoproteincomplexes.RNA14:324–335

191.MonshausenM,GehringNH,KosikKS(2004)ThemammalianRNA-bindingproteinStaufen2linksnuclearandcytoplasmicRNAprocessingpathwaysinneurons.NeuromolecularMed6:127–144192.

Dugre-BrissonS,ElviraG,BoulayK,Chatel-ChaixL,MoulandAJ,DesGroseillersL(2005)InteractionofStaufen1withthe50

700

endofmRNAfacilitatestranslationoftheseRNAs.NucleicAcidsRes33:4797–4812

193.

GongC,KimYK,WoellerCF,TangY,MaquatLE(2009)SMDandNMDarecompetitivepathwaysthatcontributetomyogenesis:effectsonPAX3andmyogeninmRNAs.GenesDev23:54–66

194.AjamianL,AbrahamyanL,MilevM,IvanovPV,KulozikAE,GehringNH,MoulandAJ(2008)UnexpectedrolesforUPF1inHIV-1RNAmetabolismandtranslation.RNA14:914–927195.

Chatel-ChaixL,ClementJF,MartelC,BeriaultV,GatignolA,DesGroseillersL,MoulandAJ(2004)IdentificationofStaufeninthehumanimmunodeficiencyvirustype1Gagribonucleo-proteincomplexandaroleingeneratinginfectiousviralparticles.MolCellBiol24:2637–28

196.

MoulandAJ,MercierJ,LuoM,BernierL,DesGroseillersL,CohenEA(2000)Thedouble-strandedRNA-bindingproteinStaufenisincorporatedinhumanimmunodeficiencyvirustype1:evidenceforaroleingenomicRNAencapsidation.JVirol74:5441–5451

197.

FalconAM,FortesP,MarionRM,BelosoA,OrtinJ(1999)InteractionofinfluenzavirusNS1proteinandthehumanhomologueofStaufeninvivoandinvitro.NucleicAcidsRes27:2241–2247

198.CechTR(2004)Beginningtounderstandtheendofthechro-mosome.Cell116:273–279

199.SmogorzewskaA,deLangeT(2004)Regulationoftelomerasebytelomericproteins.AnnuRevBiochem73:177–208

200.

DahlseidJN,Lew-SmithJ,LeliveltMJ,EnomotoS,FordA,DesruisseauxM,McClellanM,LueN,CulbertsonMR,BermanJ(2003)mRNAsencodingtelomerasecomponentsandregula-torsarecontrolledbyUPFgenesinSaccharomycescerevisiae.EukaryoticCell2:134–142

201.LewJE,EnomotoS,BermanJ(1998)Telomerelengthregu-lationandtelomericchromatinrequirethenonsense-mediatedmRNAdecaypathway.MolCellBiol18:6121–6130

202.

ReichenbachP,HossM,AzzalinCM,NabholzM,BucherP,LingnerJ(2003)Ahumanhomologofyeastest1associateswithtelomeraseanduncapschromosomeendswhenoverexpressed.CurrBiol13:568–574

203.SnowBE,ErdmannN,CruickshankJ,GoldmanH,GillRM,RobinsonMO,HarringtonL(2003)FunctionalconservationofthetelomeraseproteinEst1pinhumans.CurrBiol13:698–704204.RedonS,ReichenbachP,LingnerJ(2007)ProteinRNAandproteininteractionsmediateassociationofhumanEST1A/SMG6withtelomerase.NucleicAcidsRes35:7011–7022

205.SchoeftnerS,BlascoMA(2008)DevelopmentallyregulatedtranscriptionofmammaliantelomeresbyDNA-dependentRNApolymeraseII.NatCellBiol10:228–236

206.

LukeB,PanzaA,RedonS,IglesiasN,LiZ,LingnerJ(2008)TheRat1p50to30exonucleasedegradestelomericrepeat-con-tainingRNAandpromotestelomereelongationinSaccharomycescerevisiae.MolCell32:465–477

207.ChawlaR,AzzalinCM(2008)ThetelomerictranscriptomeandSMGproteinsatthecrossroads.CytogenetGenomeRes122:194–201

208.

CarastroLM,TanCK,SelgM,JackHM,SoAG,DowneyKM(2002)IdentificationofdeltahelicaseasthebovinehomologofHUPF1:demonstrationofaninteractionwiththethirdsubunitofDNApolymerasedelta.NucleicAcidsRes30:2232–2243

209.KaygunH,MarzluffWF(2005)TranslationterminationisinvolvedinhistonemRNAdegradationwhenDNAreplicationisinhibited.MolCellBiol25:6879–6888

210.

MarzluffWF(2005)Metazoanreplication-dependenthistonemRNAs:adistinctsetofRNApolymeraseIItranscripts.CurrOpinCellBiol17:274–280

P.Nicholsonetal.

211.OsleyMA(1991)Theregulationofhistonesynthesisinthecell

cycle.AnnuRevBiochem60:827–861

212.MarzluffWF,WagnerEJ,DuronioRJ(2008)Metabolismand

regulationofcanonicalhistonemRNAs:lifewithoutapoly(A)tail.NatRevGenet9:843–854

213.NicholsonP,MullerB(2008)Post-transcriptionalcontrolof

animalhistonegeneexpression–notsodifferentafterall.MolBiosyst4:721–725

214.KaygunH,MarzluffWF(2005)Regulateddegradationofrep-lication-dependenthistonemRNAsrequiresbothATRandUpf1.NatStructMolBiol12:794–800

215.MullerB,BlackburnJ,FeijooC,ZhaoX,SmytheC(2007)

DNA-activatedproteinkinasefunctionsinanewlyobservedSphasecheckpointthatlinkshistonemRNAabundancewithDNAreplication.JCellBiol179:1385–1398

216.SuC,GaoG,SchneiderS,HeltC,WeissC,O’ReillyMA,

BohmannD,ZhaoJ(2004)DNAdamageinducesdownregu-lationofhistonegeneexpressionthroughtheG(1)checkpointpathway.EMBOJ23:1133–1143

217.MullenTE,MarzluffWF(2008)DegradationofhistonemRNA

requiresoligouridylationfollowedbydecappingandsimulta-neousdegradationofthemRNAboth50to30and30to50.GenesDev22:50–65

218.WiluszCJ,WiluszJ(2008)Newwaystomeetyour(3’)end

oligouridylationasasteponthepathtodestruction.GenesDev22:1–7

219.ZhouBB,ElledgeSJ(2000)TheDNAdamageresponse:putt-ingcheckpointsinperspective.Nature408:433–439

220.MoritaT,YamashitaA,KashimaI,OgataK,IshiuraS,OhnoS

(2007)DistantN-andC-terminaldomainsarerequiredforintrinsickinaseactivityofSMG-1,acriticalcomponentofnonsense-mediatedmRNAdecay.JBiolChem282:7799–7808221.AbrahamRT(2004)PI3-kinaserelatedkinases:‘big’playersin

stress-inducedsignalingpathways.DNARepair(Amst)3:883–887

222.GehenSC,StaverskyRJ,BambaraRA,KengPC,O’ReillyMA

(2008)hSMG-1andATMsequentiallyandindependentlyreg-ulatetheG1checkpointduringoxidativestress.Oncogene27:4065–4074

223.MasseI,MolinL,MouchiroudL,VanhemsP,PalladinoF,

BillaudM,SolariF(2008)AnovelrolefortheSMG-1kinaseinlifespanandoxidativestressresistanceinCaenorhabditisele-gans.PLoSOne3:e3354

224.OliveiraV,RomanowWJ,GeisenC,OtternessDM,MercurioF,

WangHG,DaltonWS,AbrahamRT(2008)AprotectiveroleforthehumanSMG-1kinaseagainsttumornecrosisfactor-alpha-inducedapoptosis.JBiolChem283:13174–13184

225.PalM,IshigakiY,NagyE,MaquatLE(2001)Evidencethat

phosphorylationofhumanUpflproteinvarieswithintracellularlocationandismediatedbyawortmannin-sensitiveandrapa-mycin-sensitivePI3-kinase-relatedkinasesignalingpathway.RNA7:5–15

226.WangW,CzaplinskiK,RaoY,PeltzSW(2001)TheroleofUpf

proteinsinmodulatingthetranslationread-throughofnonsense-containingtranscripts.EMBOJ20:880–0

227.AzzalinCM,LingnerJ(2006)ThedoublelifeofUPF1inRNA

andDNAstabilitypathways.CellCycle5:1496–1498

228.GehringNH,Neu-YilikG,SchellT,HentzeMW,KulozikAE

(2003)Y14andhUpf3bformanNMD-activatingcomplex.MolecularCell11:939–949

229.HeF,BrownAH,JacobsonA(1996)Interactionbetween

Nmd2pandUpf1pisrequiredforactivitybutnotfordominant-negativeinhibitionofthenonsense-mediatedmRNAdecaypathwayinyeast.RNA2:153–170

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务