e-mail:gosset@vki.ac.be
AnneGosset1
Jean-MarieBuchlin
e-mail:buchlin@vki.ac.be
vonKarmanInstituteforFluidDynamics(VKI),
ChausséedeWaterloo72,10Rhode-St-Genèse,Belgium
Thispaperpresentsananalysisofthegas-jetwipingprocessinhot-dipgalvanization.Thistechniqueconsistsofreducingtheliquidfilmthicknessonamovingsubstratebyapplyinggasslotjets.Atheoreticaldevelopmentallowsthecomputationofthefilmthicknessevolutioninthewipingzone.Itisfurthersimplifiedtoanengineeringmodelwhichpredictsdirectlythefinalcoatingthickness,ingoodagreementwithwipingexperi-ments.Thelimitofapplicabilityofjetwipingisduetotheoccurenceofaviolentfilminstability,calledsplashing,whichtakestheformofaliquiddropletemissionjustup-streamthenozzle.Anexperimentalinvestigationofthisphenomenonisconductedonawater-modelfacility.Twonozzledesignsaretested.Theeffectofprocessparameterssuchasthestripspeed,thenozzlepressure,thestandoffdistance,andthetiltangleofthenozzleonsplashingisemphasized.Adimensionlesscorrelationisestablishedtopredicttheoperatingconditionsleadingtosplashingoccurence.Itissuccessfullyconfrontedtoobservationsmadeongalvanizationlines.͓DOI:10.1115/1.2436585͔Keywords:coatingflows,thinfilms,gas-jetwiping,dropletformation,spray
1Introduction
Thedepositionofaverythinliquidfilmonasolidsurfaceisthebasisofnumerouscoatingtechniquesusedinindustrialpro-cessessuchaspaperandphotographicfilmmanufacturing,wirecoating,andintheironandsteelindustries.Inthecaseofhot-dipgalvanization,movingsteelstripsarecoatedwithathinlayerofzincinordertoresisttooxidization.Theprotectivemetalisap-pliedinitsliquidstate,bydippingthesubstrateintoabathofcoating.However,atcommonstripspeeds,theliquidlayerdraggedbythemovingwebisfartoothickandunevenfortheapplicationsconsidered.Thefinalcoatingthicknessisthereforecontrolledbytheapplicationoftwo-dimensionalhigh-speedgasjetsimpingingontheliquidlayer.Theyleadtotheformationofarunbackflowdowntothebath,leavingauniformandconstantcoatingthicknessdowsntreamonthesubstrate.Thisprocessisreferredtoasthejetwipingtechnique,orair-knifecoating,theprincipleofwhichisillustratedbytheschematicshowninFig.1.Thefilmthicknessafterwiping,hf,dependsonthesubstrateve-locityU,thenozzlepressurePn,thenozzletosubstratestandoffdistanceZ,thenozzleslotwidthd,andthenozzletiltangle␣,aswellastheliquidproperties.
Asthestripspeedincreases,thewipingtechniqueishoweverlimitedbytheoccurenceofaratherviolentfilminstabilitycalledsplashing,whichoccursupstreamthejetnozzle.Typicalvisual-izationofincipientsplashingonagalvanizationlineisshowninFig.2͑a͒,whileFigs.2͑b͒and2͑c͒demonstratethatthesplashingphenomenonisqualitativelywellreproducedonawatermodelfacility.Thismechanismischaracterizedbytheejectionofliquiddropletsfromtherunbackfilmflow,followedbyitscompleteexplosioninfullydevelopedstate.Splashingaffectsthefinalcoat-ingqualitybecausetherunbackflowseparatesfromthesubstratewhenitdevelops.Suchabehaviordegradessignificantlythewip-ingconditions͑pressuregradientandshearstressatjetimpinge-ment͒,andleadstounstableconditionsandtotheformationofzincdroplets.Theresultisaverypoorwipingefficiency,i.e.,thefilmthicknessislessefficientlyreducedforgivenoperatingcon-ditions,andapoorcoatingqualitydownstream.Moreover,theejecteddropletsmayreachthenozzleslit,andaftersolidification,
Correspondingauthor.
ContributedbytheFluidsEngineeringDivisionofASMEforpublicationintheJOURNALOFFLUIDSENGINEERING.ManuscriptreceivedApril24,2006;finalmanu-scriptreceivedDecember27,2006.Assoc.EditorTheodoreHeindel.
1
blockit.Inthecaseofgalvanization,thereisalsoasafetyconcernbecausethemoltenzincdropletsat460°Cmayreachtheworkersinchargeofremovingregularlythelayerofoxidizedzincatthefreesurfaceofthebath.
Itisthereforeofinteresttohaveatdisposalapredictivemodelforsplashingoccurrenceongalvanizationlines.Meanwhile,ama-jorpracticalconcernisthemaintenanceofhighproductionratesofconstantcoatingthicknessproducts.Therefore,thepredictionofthewipingefficiencyisnecessarytodefinecompletelyanop-timumprocesswindow.
Thispaperdescribesasimpleengineeringmodelforthefinalcoatingthicknessafterwiping.Itisvalidatedwithexperimentaldatainaprocesswindowinwhichsurfacetensioncanbene-glected.Aphenomenologicalapproachforthepredictionofsplashingoccurrenceisthenproposed.Adatabasegatheringsplashingconditionsforawiderangeofparametersonawatertestfacilityisusedforthederivationofadimensionlessempiricalmodelforsplashing.Theanalysisemphasizestheeffectofnozzletilting.Optimumprocesswindowscanthusbedefinedfromthecombinationofthewipingandsplashingmodels.Finally,theen-gineeringtoolsareappliedtotypicalgalvanizationconditions.
2JetWiping
Ananalyticalmodelisdevelopedforthepredictionofthefinalfilmthickness.Theeffectofnozzletiltingisincludedinthismodel.Itisvalidatedwithexperimentaldata.
2.1AnalyticalModel.Thefilminterfaceshapeinjetwipingisduetothepressuregradientandshearstressdistributionspro-ducedbytheimpingingjet͓1–3͔.TypicalprofilesofthewipingactuatorstogetherwiththeinterfaceshapeareshowninFig.3.Variousmodelsforthefilmthicknessprofileinthewipingregionareproposedinliterature.ThepioneerstudyinthisfieldistheonebyThorntonandGraff͓1͔,whoassumethattheinterfacedefor-mationisdueonlytothepressuregradientcreatedbytheimping-ingjetonthefilm.Itisconsideredasabodyforcesupplementinggravity.Tuck͓2͔adoptsasimilarapproach,andchecksthestabil-ityofthesolutionsforlongwavelengthperturbations.EllenandTu͓3͔proposeamodelwhichforthefirsttimetakestheshearstressintoaccount.Theyshowthatitparticipatesfor20–40%tothewipingaction.Tucketal.͓4͔quantifytheinhibitingeffectofsurfacetensiononjetwiping,whereasitisneglectedinpreviousstudies.Followingthis,Yoneda͓5,6͔presentsacompletenumeri-TransactionsoftheASME
466/Vol.129,APRIL2007Copyright©2007byASME
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
Fig.3Typicalfilmshapeinjetwipingwithpressuregradientandshearstressprofilesduetothejet
Fig.1Schematicofthejetwipingoperationappliedtothegalvanizationprocess
calsolutionforthefilminterface,includingbothsurfacetensioneffectsandshearstress.Moreover,hepredictsthetransitionfrom“weak”air-knifeaction͑norunbackflow͒to“strong”action͑ef-fectivejetwiping͒.Finally,theoriginalityofthedevelopmentbyBuchlin͓7͔liesinthefactthatheproposesdifferentlevelsofsolutionofthemodel,accordingtotheassumptionsmade.For
instance,whensurfacetensionistakenintoaccount,hepresentsanumericalsolutionforthethicknessdistributioninthewipingregion.Whensurfacetensionisrelaxed,heshowsthataone-dimensionalanalyticalsolutionexists.Assumingfinallythatthemainwipingactuators͑firstmaximumpressuregradientandshearstressmetbythedraggedfilm͒actatthesamelocation,hepro-posestheideaofazero-dimensionalmodelpredictingdirectlythefinalfilmthickness.
Thetheoreticaldescriptionofgas-jetwipingisusuallybasedonthelubricationapproach,whichassumesnegligibleinertiawithrespecttoviscous,gravityandpressureterms.If͑Ox͒istheaxisalongthesubstrate,and͑Oy͒theoneacrossthesubstrate,itturnsoutthatinjetwiping,variationsalongthexdirectionareveryslowcomparedtovariationsalongyandtothefilmthickness.Thescalingfactor⑀=2h/Ӷ1canthusbeintroduced,wherehisthemeanfilmthickness,andisthecharacteristicwavelengthofaxfluctuation.Makingthechangeofvariablesx*=xandy*=y,theinertiatermsintheNavier–Stokesequationsarefoundtobeoforder⑀RefӶ.SincethefilmReynoldsnumberRefbasedonthefilmvelocityinthesubstratereferentialandonthemeanthicknessisverysmall,inertiacanbeneglected,andtheflowcanbeas-sumedparallel.Theresulting͑Ox͒momentumequationofthefilmstatesthattheshearstressbalancestheweightandpressure
ץ2udPll2=lg+ץydxq=
͑1͒
͵h͑x͒
u͑x,y͒dy͑2͒
0
whereu͑x,y͒isthelocalfilmvelocity;h͑x͒isthelocalfilmthick-ness;landlare,respectively,theliquiddynamicviscosityand
density;gistheaccelerationofgravity;Plisthepressureintheliquid;andqisthefilmvolumetricflowrate.ThefilmisthinenoughtoassumethattheliquidpressurePlisequaltothegas-jetpressureatimpingementPgcorrectedbyasurfacetensiontermduetothemeniscusformation
dhxxdPldPg
=−l
3/2
dx͑1+h2dxdxx͒
ͫͬ͑3͒
Fig.2„a…Splashingphenomenononagalvanizationline;„b…
fullydevelopedsplashingwithwater;therunbackflowiscom-pletelyseparatedalongthestripwidth;and„c…sideviewvisu-alizationofsplashingwithwater
wherelistheliquidsurfacetension;andsubscriptxreferstoderivationwithrespecttox.Subscriptlreferstotheliquidphase,andsubscriptgtothegasphase.Thetermcontaininglrepresentsthecontributionofsurfacetensiontothepressuregradientjumpthroughthegas–liquidinterface.Themeanfilmcurvaturehxx/͑1
3/2+h2canbelinearizedtogethxxxonthegroundsthatthefreex͒
surfaceslopeissmall.TheboundaryconditionstobeassociatedwithEq.͑1͒expresstheno-slipconditionofthefilmonthesub-strate,andthecontinuityofshearstressattheinterface
u=U
at
y=0
͑4͒
JournalofFluidsEngineeringAPRIL2007,Vol.129/467
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
l
ץu
=͑x͒ץy
aty=h͑x͒͑5͒
whereistheshearstressduetotheimpingingjetonthefilmfreesurface.Equation͑1͒togetherwithEqs.͑4͒and͑5͒canbereadilyintegratedtogivethefilmvelocityprofileu͑x,y͒fromwhichtheflowrateqisdeterminedthroughEq.͑2͒.Theresultingflowrateequationhasthefollowingnondimensionalform
⌫
ˆˆˆ2ˆ͑X͒d3hˆ͑X͒+2Q−3h−1.5Th=1+ٌPg
dX3ˆ3h
͑6͒
ˆThenormalizedvariablesaredefinedasfollows:X=x/d,h
=h/h0withh0=ͱlU/lg;⌫=lh0/lgd3;Q=q/q0withq0
ˆ=/with=ͱUg.Sub-ˆ=ٌP/g;andT=2/3Uh0;ٌPggl00ll
script0referstothedraggedfilmflowwithoutwiping.⌫isthedimensionlessparameterwhichmeasurestheinfluenceofsurfacetension͓4͔.ThoughthepressurePistheonlyfunctionofx,wechoosedeliberatelytouseٌPg͑x͒insteadofdPg/dxforconve-nienceinwriting.
Sincethepressuregradientandshearstressdistributionsduetothejetareusuallyassumedtobeknown,Eq.͑6͒hasbasicallytwo
ˆandflowrateQ.unknowns:thedimensionlessfilmthicknessh
Becauseitwasshownthatthepresenceoftheliquidfilmalmostdoesnotaffectthejetprofiles͓8͔,thepressuregradientandshearstressprofilesaregivenbyexperimentalornumericalsimulationofanimpingingjetonaflatplate͓9,10͔.Assuminganegligibleeffectofsurfacetension,whichwillbejustifiedlater,Eq.͑6͒canbefurthersimplifiedto
ˆ͒h−1.5Tˆh−3hˆ+2Q=0͑1+ٌP
ˆ2
ˆ3
͑7͒
Fig.4Comparisonofthedimensionlessvolumetricfilmflow
ratepredictedbytheknifemodelandvariousmodelsfromlit-eratureasafunctionofthedimensionlessjetpressuregradientforCa=0.01
C=−10−5Rej+0.129
͑13͒
wherePisnowtheliquidpressure,whichisequaltothegaspressure.ThesolutionofEq.͑7͒isobtainedbysolvinglocallythecubicequation,usingthepressuregradientandshearstressdistri-ˆ͑X͒andTˆ͑X͒ofanimpingingjetonaflatsurface.ItisbutionsٌP
generallyagreedthatthepressuredistributionatthewalliswelldescribedbyaGaussianlaw͓9,10͔
P͑͒=Pse−0.6932
Otherwise,C=0.067.
Inthewall-jetregion,theshearstressdistributionisbetterap-proximatedby͓9͔
͑͒=0.26
dPnRe0.2j
ͩͪͩͪ1
͉͉+4
1bP
͑14͒
͑8͒
wherePsisthemaximumpressureatthestagnationpoint;and=x/bP,wherebPisthedistancebetweenthejetaxisandthelocationofPs/2.Thepressuregradientprofileisthereforegivenbythefollowingexpression
ٌP͑͒=−1.386
Ps−0.6932−1.386e=P͑͒bPbP
͑9͒
PsandbParebothfunctionsofZandd.Whenthepotentialcore
impingesontotheplate͑Z/dഛ5͒,thestagnationpressureremainsconstantandequaltothejetpressurePn.ForZ/dϾ5,Psde-creaseswhenZ/dincreases
dPs
=Cp
ZPn
͑10͒
Insteadyconditions,continuityimpliesthattheliquidflowrate
Qisconstantthroughoutthewipingregion.Ontheotherhand,thefilmthicknesshvariesalongxwiththeٌP͑x͒and͑x͒distribu-tions.ThecubicEq.͑7͒,whichhastobesolvedforallxvalues,hastwo,ornopositiveroots.ThereexistsonlyonevalueofQforwhichthefilmthicknessevolutionisphysicallyacceptable.Itcor-respondstotheconditionwhenthederivativeofthefilmflowrate
ˆ=0͒,thatistosaywithrespecttothefilmthicknessisnull͑dQ/dh
whentheflowrateisoptimum.Azero-dimensionalmodel͑here-afterreferredtoastheknifemodel͒canbederivedfromEq.͑7͒,relyingontheobservationthatthepositionoftheupstreammaxi-mumpressuregradientandshearstresscorrespondsapproxi-matelytothelocationwherethefilmsurfacevelocityisequaltozero͑calledlocationoffilmsurfacebifurcation͓͒10͔.Therefore,weconsideronlythispositionwherethenetflowrateis“opti-mum”andnameitXopt.Equation͑7͒iswrittenatthatpositionto
ˆgiveEq.͑15͒,andthelocalfilmthicknessisnamedhopt
ˆ͒hˆ3ˆˆ2ˆ͑1+ٌPmaxopt−1.5Tmaxhopt−3hopt+2Q=0
͑15͒
Then,inordertosolveEq.͑15͒,asecondequationisfoundby
ˆ=0.usingthefactthatthenetflowrateisoptimum,i.e.,dQ/dh
ˆcanthusbefoundthroughEq.͑16͒Thevalueofhopt
ˆˆ2ˆTmax+Tmax+4͑1+ٌPmax͒ˆhopt=
ˆ͒2͑1+ٌPmax
withCpӍ6.5.
Intheimpingementregion,theshearstressprofilefitscloselythedistributiongivenby͓9͔
͑͒=max͓erf͑0.833͒−0.2e−0.693͔
2
͑11͒
whereerfistheerrorfunction.Foradevelopedimpingingjet͑Z/dϾ8͒,themaximumshearstressisgivenby͓9,10͔
ͱ
͑16͒
max=C͑Rej͒
PnZ/d
͑12͒
whereCisavaluedependingonthejetReynoldsnumberRejbasedonthenozzleslotwidthdandthejetexitvelocityV0j,whenitislowerthanabout6000468/Vol.129,APRIL2007
ThisvalueisreplacedinEq.͑15͒,andQisfound.Fardown-streamthewipingregion,thefilmthicknessbecomesconstantandequaltoitsfinalvaluehf.UsingthevalueofQandEq.͑2͒,hfiscomputed͑thevelocityprofileacrossthefilmisalmostuniformandequaltothesubstratevelocityUatthatpositions͒.
ThedifferentaforementionedmodelsarecomparedinFig.4,
TransactionsoftheASME
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
wheretheevolutionofthedimensionlessfilmflowrateQisplot-ˆtedasafunctionofthedimensionlesspressuregradientٌPmaxfor
acapillarynumberCa=lU/lequalto0.01.Ifpurewaterisconsideredastheworkingfluid,itcorrespondstoasubstrateve-ˆˆlocityU=0.67m/s.ThevaluesofٌPmaxandTmaxusedforthe
computationsinFig.4arebasedontheexperimentalcorrelationsEqs.͑9͒–͑14͒fromBeltaosetal.͓9͔.Thecomparisonofthemod-elsofThorntonetal.͓1͔andTuck͓2͔revealsthatthesurfacetensioneffectbecomesnegligiblebeyondacertainvalueofthepressuregradient;thejetactionthenovercomesthecapillaryforceinthewipingmeniscus.ThesameconclusionisreachedwhencomparingtheresultsofYoneda͓5,6͔withtheonesoftheknifemodel,whichbothtakeshearstressintoaccount,incontrasttothepreviouslycitedmodels.Asnotedpreviously,themodelproposedbyYoneda͓5,6͔predictsthejetthresholdbeyondwhichthefilmthicknessisreduced.ItappearsasthestraightlineportioninFig.4.
ItcanbethusinferredthattheknifemodelisperfectlyreliableforagivenCawhenthejetactionis“strong”͑comparedtocap-illarityinthemeniscus͒.Itshouldbenotedthatthefinalfilmthicknesshfwhichisobtainedveryquicklywiththezero-dimensionalknifemodeldiffersbygenerallylessthan1%fromthevaluefoundwhencomputingthewholethicknessdistributionwiththeone-dimensional͑1D͒modelEq.͑7͒.Acompletethick-nessprofilethusobtainedwasvalidatedwithnumericaldatafromvolumeoffluid-largeEddysimulation͑VOF-LES͒numericalsimulationsbyLacanetteetal.͓8͔forZ/d=8andajetpressurePn=1450Pa.Thepressuregradientandshearstressdistributionsusedforthe1Dmodelpredictionshavebeenmeasuredexperi-mentally͓8͔,andtheyfitcloselytheempiricalcorrelationsEqs.͑9͒–͑10͒and͑11͒–͑14͒fromtheliterature͓9͔.Thefilminterfaceshapesobtainedanalyticallyandwithtwo-phasesimulationsareingoodagreementbothinthemeniscusregionanddownstreamthejet,provingthatsurfacetensioncanbeneglectedinsuchcon-ditions.Thefilmthicknessafterwipinghfisunderestimatedofabout15%bythewipingmodelwithrespecttotheinterfaceob-tainednumerically.Upstreamtheimpingingzone,therunbackflowfromthe1Dmodelissignificantlythickerthanthesimulatedinterface.Thereasonforthatmaybethehighaspectratioofthemeshcellsinthatregion,inducingapoorspatialresolutionfortheinterfacedetectioninVOF-LESsimulations,orthefactthatthelubricationassumptionmadeintheanalyticalmodelisnotbevalidintherunbackflowregion.
2.2EffectofNozzleTilting.Whenthenozzleistilted,theimpingementangleofthejetinvolvesanasymmetryofthepres-sureandshearstressprofiles,andthusamodificationofthewip-ingactuators.Forthepurposeofsplashingdelaystudy,wewillconsideronlydownwardnozzletilting.Inthatcase,itisexpectedthattheusptreammaximumpressuregradientisreducedduetotheflatteningofthepressuredistribution.ExpressionsforٌPmaxandmaxcanbederivedfromtheempiricalrelationsprovidedbyBeltaosforobliqueimpingingjets͓11͔.Itfollowsthat
ٌPmax=
5.712d
Pncos␣ZЈbP
͑17͒
Fig.5Schematicofthewaterjetwipingfacility
remainslowerthan30deg͓11͔.Beltaos͓11͔proposesavalueof
0.06fordevelopedimpingingjets͑Z/dϾ8͒.Themaximumshearstressforatiltedjetthereforevariesincos␣.
ThepressuregradientbeingthemainactuatorfortheZ/dval-uesconsideredinthepresentstudy,itmaybeexpectedthattheoverallwipingefficiencyislowerwhenthejetistilteddownward.2.3ValidationWithExperimentalData.Theknifemodelhastheadvantageofbeingverysimpleandfasttoimplement.Itsuseforthepresentinvestigationandinindustrialconditionsre-quiresitsvalidationwithexperimentaldata,inverywellcon-trolledconditions.
2.3.1ExperimentalSetupandTechniques.Therefore,wipingexperimentsareperformedonadedicatedwatermodelfacility,whichsimulatesagalvanizationline.Figure5showsaschematicofthesetup,whichincludesaverticalrubberstrip5mlongand0.5mwide,stretchedbetweentworolls.Thestripissetintomo-tionbytheupperroll,whichisentrainedbyanelectricmotor.Thestripvelocitycanbeadjustedintherange0.5–4.5m/s,anditismeasuredusingatachometer.Thesubstratedipsinabathofwa-ter,towhichasurfactantwasaddedtoensureagoodwettability.Thewatersurfacetensionthusdropsto0.03N/m±0.001N/m.Normally,surfactantmaterialstendtoremainatthefreesurfaceofaliquid,andsurfacetensiongradientsmayoccur.However,thecapillarynumbersremainsufficientlylowheresothatsuchaneffectisnotfelt.Moreover,thewipingprocessensuresacontinu-ousmixingoftheworkingfluidandsurfactant.Theslotnozzleispositionedat0.8mabovethefreesurfaceofthebath.Itstiltangleisadjustable,andthestandoffdistanceZbetweenthenozzleandthestripistunedthankstoshimswithin±0.1mm.Twonozzlegeometriesaretested.TheyaresketchedinFig.6,togetherwiththeirmaingeometricalcharacteristics.NozzleT1isfullysymmet-ric,whileT2exhibitsabottomclearingandamoreconfinedge-ometry.Theyareboth0.6mwidetoavoidedgeeffects.The
ZЈisthenozzletowalldistancealongthejetaxis,suchthatZ͑␣=0deg͒=ZЈcos␣.ThequantitybP/Zisgivenbyanempiri-calrelation͓11͔,andisalmostinsensitiveto␣foranglessmallerthan30deg.Themaximumpressuregradienthasthereforeanevolutionincos2␣.
Theshearstressmaxcanbeapproximatedbythefollowingexpression͓11͔
max=C*͑␣͒
PndZЈ
͑18͒
Fig.6Nozzledesigns
whereC*isacoefficientwhichdependsonthenozzlegeometry,andisshowntobealmostinsensitivetothejetangle␣whenitJournalofFluidsEngineering
APRIL2007,Vol.129/469
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
nozzleisfedwithcompressedairupto10kPa.Theslotwidthdcanbeadjustedbetween0.7mmand2.1mmwithin±0.005mm.Inalltheexperimentspresentedhere,d=1.4mm.Forsakeofsimplicity,thewipingmechanismisstudiedonlyononeside.Toensureagoodstabilityofthestripintheimpactzone,therearfaceisslidingonanaluminumplatelubricatedbytheentrainedwater.Themeanliquidfilmthicknessinspaceandtimeisdeterminedfromthemeasuredmassflowrateafterwipingq
hf=
qlLU
͑19͒
whereListhestripwidth.Theassumptionofauniformvelocityprofileacrosstheliquidfilmintroducesanerroroflessthan0.1%onhf,withrespecttothevaluecomputedwiththerealfilmve-locityprofilecomputedfromEq.͑1͒.Theliquidfilmiswithdrawnatthetopofthebandbytheactionofarubberscrapercombinedtoasuckingapparatusbasedonairejectors.Twolateralsmalljetsdrawtheliquidfilmtowardssuctionports,whichareconnectedtoacycloneseparator.Abalancemeasurestheamountofcollectedwater,andastopwatchtheweightingtime.Dependingontheflowrate,themeasuringtimerangesbetween1and6min.Eachex-perimentisrepeatedfivetimes.Theuncertaintyonthemeanvalue
2
ofameasurandXisgivenbyU=ͱB2+͑tS¯X͒,whereBisthebias
¯error,S¯XistheprecisionindexofthemeanX,andtistheStudent
valuewhichisafunctionofthedegreesoffreedomusedincal-culatingS¯X.Forthepresentmeasurements,tisequalto2.776foraconfidenceintervalof95%.Theflowratestandarddeviationoverrepeatedmeasurementsisanincreasingfunctionofqf͑higherflowratesaremoredifficulttomeasure͒anditisoftheorderof±0.5%,whichgivesaprecisionindexof±1.4%with95%confidence.Thebiaserroronthefilmflowrateisestimatedto±5.10−5kg/s,fromwhichwefinallygetqf±5.2%fortheoveralluncertainty.Asforthestripvelocity,itsuncertaintyis±0.6%at95%confidencelevel,innominalwipingconditions.Thepreci-sionindexonhfistherefore±0.5%andthebiaserrorabout±5%,whichgivesafinaluncertaintyof±5.2%at95%confidence.Theuncertaintyonthenormalizedfilmthicknesshf/h0andfilmRey-noldsnumberReisalsoabout±5.2%.Theuncertaintyonthejetpressureisabout±6Pa,whiletheoneonZ/disestimatedto±4%.
2.3.2Validation.TheimportanceofcapillaryeffectsinthepredictionofthefinalfilmthicknessisillustratedinFig.7,forawaterfilmflow.ThestandoffdistancebetweenthenozzleandthesubstrateisZ/d=10,andthestripvelocityis1.5m/s,which
ˆ,givesacapillarynumberof0.055.AtthelowestvaluesofٌPmax
theknifemodelunderestimatesthefilmthickness͑normalizedbythefilmthicknesswithoutwipingh0͒ofalmost35%withrespecttotheexperimentalvalues,whilethecompletemodelofYoneda͓5,6͔succeedsinprovidingreasonablevalues͑overestimationof9%atmost͒.Soitcanbeassertedwithsomeconfidencethatthediscrepancybetweentheknifemodelandthemeasurementsismainlyduetotheomissionofsurfacetension.Asthejetpressuregradientincreases,theknifemodelpredictionbecomesmoreac-curate,untilitalmostmatchesthemeasurementsstartingfromˆٌPmax=40approximately.Itshouldbepointedoutthatweareinterestedprimarilyinthewipingefficiencyintheneighborhoodofsplashingconditions,wherethecapillarynumberrangesfrom0.07to0.14,thuswheresurfacetensionhasalowereffect.More-over,closetosplashing,thejetpressuregradientactionover-comeslargelythecapillaryeffects,andtheknifemodelisex-pectedtogiveaccuratepredictionsforhf.
TypicalresultsfornozzleT1inconditionswheresurfaceten-sionhaslittleeffectareshowninFig.8,wherethenozzledy-namicpressurePniskeptconstant͑Pn=1450Pa,whichcorre-spondstoajetReynoldsnumberRejof4500͒,whilethestandoffdistanceZ/dvariesbetween2and14.Theknifemodelpredic-tionsandthemeasurementsareingoodagreement͑within5–9%͒,470/Vol.129,APRIL2007
Fig.7EffectofsurfacetensioninthepredictionoffinalfilmthicknessatZ/d=10andCa=0.055
exceptforlargeZ/dwhereitcanbeanticipatedthatthepressuregradientstartstobetooweaktoneglectcapillarity͑16%under-estimationofhf/h0͒.ThewipingplateauuntilZ/dӍ8iswellrecoveredbytheanalyticalmodel.Itisduetothespecificbehav-iorofthewipingactuatorsٌPmaxandmaxintheregionofthepotentialcore͓10,12͔.ThemoreimportantunderestimationofhfatZ/d=12illustratestherisingeffectofsurfacetensionwhichbecomesnon-negligibleduetothelargestandoffdistance.TheuncertaintyofthethicknesspredictionhereliesmainlyintheuncertaintyoftheexperimentalornumericalestimationofٌPmaxandmax.Inthepresentstudy,weusetheresultsofapriorchar-acterizationofnozzleT1onaflatsurface,performedduringaparallelexperimentalstudy͓12͔.Thefacilityusedforthisinves-tigationconsistsofaninstrumentedplateonwhichthejetim-pingesnormally.BydisplacingthisplateequippedwithastaticpressureholeandStantonprobes,thepressureandshearstressdistributionsatimpingementaremeasured.Theuncertaintyonthe
Fig.8Comparisonoffilmthicknessafterwipingobtainedex-perimentally,andpredictedbytheknifemodelforRej=4500andU=1.5m/s
TransactionsoftheASME
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
Fig.9Experimentalwipingcurvesforthetwonozzlegeom-etriesT1andT2atZ/d=10andU=1.5m/s
Fig.10EvolutionofnormalizedfinalfilmthicknesswiththenozzletiltingangleatconstantRej=5100fordifferentZ/dvalues
wipingactuatorsisestimatedto±4%forthepressuregradient,andpresumablymorethan±10%fortheshearstress,duetothefavorablepressuregradientwhichstronglyaffectstheStantonprobemeasurements͓8͔.Asensitivitystudyoftheknifemodelshowsthatthesevaluesleadtoafinal±6%uncertaintyonthethicknesshf.ItwasalsoshownbyLacanetteetal.͓8͔thattheresultsofVOF-LESnumericalsimulationstakingfullyintoac-countthesurfacetensioneffectsareinreasonableagreementwiththemeasurementsandmodelpredictions,exceptforsmallZ/ddistances͑Z/dഛ4͒,wheretheimportantunderestimationofhfisprobablyduetoanoverestimationofٌPmaxandmax.Thelatteristypicalofanartificialconfinementproducedbythedomainboundariesinimpingingjetsnumericalsimulations͓13͔.
TypicalexperimentalwipingcurvesobtainedbyvaryingthenozzledynamicpressurePnatconstantZ/d=10areshowninFig.9.ItappearsthatnozzleT2isabout15%moreefficientinwipingthanT1,thatistosayforaconstantnozzlepressurePn,thefinalfilmthicknessis15%lowerwithT2thanwithT1.Thenozzleexternalandinternalgeometriesseemthereforetohaveanon-negligibleinfluenceonthewipingactuatorsٌPmaxandmax.Thiscouldbequantifiedbycharacterizingtheimpingingjetproducedbyvariousnozzlegeometriesonaflatplate.Sincewipingeffi-ciencyiscontrolledbytheupstreammaximumpressuregradientandshearstress,wecanspeculatethatthesewipingactuatorsaremodifiedbythesquarecornershapeofT2,whichisfavorabletoflowrecirculations.
Finally,theeffectofnozzletiltingwhichisincludedintheknifemodelinSec.2.2isvalidatedbyexperimentsinFig.10,forajetReynoldsnumberof5100,attwodifferentsubstratespeedsU=1.5m/sand2m/s.Asitcouldbeexpected,thewipingeffi-ciencydropsmoreimportantlywiththetiltanglewhenthestand-offdistanceZ/dislarge.BecausethejetismoredevelopedatimpingementwhenZ/dislarger,thepressuregradientandshearstress͑andthusthewipingefficiency͒aremoresensitivetothetiltangle.Thepredictionsoftheknifemodelareinagreementwithin±7%withthemeasurements,whichisconsideredacceptableforthemodelvalidation.Itwillthusbeusedforthefuturewipingpredictionsatconstantcoatingthickness.
throughaphenomenologicalapproachoftheproblem.Anexperi-mentaldatabaseisusedforthefindingofanempiricalmodeltopredictsplashing.
3.1PhenomenologicalApproach.Theejectionofdropletsfromliquidfreesurfacesexposedtogasflowshasbeenexten-sivelystudiedinbasicconfigurations:shearedliquidfilmsonpipewalls͓14͔,stillliquidfreesurfacesimpingedbyroundjets͓15͔.However,thereexistveryfewstudiesaboutsplashinginthecon-textofjetwiping.Thisfilmsprayingmechanismmaybeseenastheultimatedevelopmentofafilminstability͓16͔,whoseampli-ficationfactormaybehighenoughsothatatomizationoccurs.Yoneda͓5,17͔usesHinze’sdropbreakupmodelinturbulentgasflow͓18͔toderiveacriterionforsplashinginjetwiping.Infact,Yoneda͓5,17͔seestheliquid“bump”formedbythewipingme-niscusasadropletofdiameter͑2h0−hf͒,whichissubjectedtoaparallelincominggasflow.Tothisextent,theproblemcanberelatedtothebreakupofasingledropletinaturbulentflow,andYoneda͓5,17͔postulatesthatthecriticalconditionsfordropletdisintegrationintosmallerdropletsarethoseofsplashingoccur-rence.Asatypicallengthforthecapillarycontribution,hechoosesthequantity͑2h0−hf͒,forwhichhegetsacorrelationdependingonthefilmcapillarynumberCaandjetpressurePn.HeendsupwithasplashingcriterionintermsofCaandcriticaljetpressureP*n.Amoreempiricalapproachisattemptedheretoiden-tifythewipingconditionsthatmayallowretardingsplashing.Thepresentmodelingpostulatesthattheonsetofsplashingoc-curswhenthesheareffectproducedbythedownwardgaswalljetovercomesthestabilizingeffectofsurfacetensionmodeledherebyl/R,whereRisthemeniscusradiusofcurvature.Thelattercanbeapproximatedby͑2h0−hf͒,asdepictedinFig.3,butsincehfӶ2h0,wechooseRӍ2h0.Expressingthewallshearstressin
2
,whereisthetermsofdynamicpressureofthewalljet͑0.5Vwj
gasdensity,andVwjisatypicalwall-jetvelocity͒,andevaluatingtheratioofthedominatingforcescontrollingthesplashingmechanismleadstotheeffectivejetWebernumberWe
2
h0/l.ThecriticalWebernumberWe*abovewhich=gVwj
splashingdevelopsiscorrelatedwiththefilmReynoldsnumberbasedonthestripvelocity,U,andthefinalcoatingthicknessRe=Uhf/l.Thewalljetvelocity,Vwj,ismodeledbythefollowingrelation,whichincludestheeffectofnozzletilting͓11͔
APRIL2007,Vol.129/471
3Splashing
Thesplashingphenomenonoccurringupstreamthewipingjetisnowinvestigated.TypicaldimensionlessparametersarederivedJournalofFluidsEngineering
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
Fig.11DimensionlesssplashingcurvesforZ/d=10,nozzleT1
Fig.12DimensionlesssplashingcurvesforZ/d=10,nozzleT2
Vwj=
V0j
ͱ1+sin␣Z/d
͑20͒
Figure13pointsoutthatthenormalizedstandoffdistanceZ/ddoesnotaffectsubstantiallythesplashingcorrelation,whichinturncanbeformulatedasfollows
We*=e͑a␣+b͒Re−n
͑21͒
Thevalueofcoefficientsaandbaswellastheexponentndependsonthenozzledesign.ForT1,a=0.043,b=5.5,andn=1.44,whileforT2,a=0.018,b=7.9,andn=1.91.ThedifferentcoefficientsforT1andT2incorrelation͑21͒resultfromacom-binationofthedifferentperformancesofT1andT2inwipingandsplashing.TheimprovementofthecoatingwindowreachedbytiltingthenozzledownwardcanbequantifiedbythenetincreaseofthestripspeedU,whichisobtainedforagivenhfvalue.Toevaluatethisenhancement,anoptimumoperatingpointisdefinedasthehighestproductivityconditionbelowsplashing.Itcorre-spondstotheintersectionbetweenthesplashingcriticalcurvegivenbyEq.͑21͒andthewipingcurveatconstantthickness.The
Itcanbeanticipatedthatdownwardtiltingofthenozzledelaystheoccurrenceofsplashing.Indeed,thetendencyofthejetstreamlinestoimpactnormallyonthefilminspiteofitsobliquepositionmightforcethefilmtosticktothesubstratejustbelowthestagnationpoint.Thisintuitionwasconfirmedbypreliminarytests.
Ithastobeseennowwhetherthelossofwipingefficiencyinducedbyjetdownwardtiltingcompensatesforthesplashingdelayatconstantfilmthickness.
3.2EmpiricalModel.Thesplashingexperimentsareper-formedonthefacilitydescribedinSec.2.3.1.Theyconsistofthevisualdetectionofsplashingfordifferentwipingconditions.Atconstantjetpressure,thesubstratevelocityisincreaseduntilsplashingoccursinitsfullydevelopedstatealongthestrip.Anhysteresisphenomenonisobserved:thesubstratespeedatwhichsplashingdisappearsisonaverage7%lowerthantheoneatwhichitappears.Wewillonlyconsidersplashingappearancehere.Thesplashingtestsaresystematicallyrepeatedfivetimes.Atfirst,twoobserversreproducedindependentlythesameexperi-ments,andthedifferenceintheresultswasfoundnottoexceed
*
͑U*max−Umin͒overasetoffivetestsperformedbyasingleexperi-menter.ThestandarddeviationofthedetectedcriticalvelocityU*is±2%.ThebiaserroronUbeingof0.006m/s,thefinaluncer-taintyonU*isoftheorderof3%at95%confidence.Thepropa-gationofaforementionederrorsleadtoafinal±6.5%uncertaintyonReand±11%onWe*insplashingconditions.
Figure11showstheevolutionofcriticalconditionsintermsofRe−We*stabilitycurvesforthesymmetricnozzleT1.Splashingoccursabovethecurve,whilejetwipingisstablebelowthecurve.Asexpected,downwardnozzletiltingallowsdelayingsplashing.Splashingdelaymeansthatsplashingoccursathigherstripspeedsforaconstantnozzlepressure.ThecomparisonwithFig.12forT2revealsthatintermsofsplashing,thenozzlegeometrydoesnotmodifymuchthecriticalconditions,atleastforlowertiltingangles.For␣=30deg,itseemsthatT1isslightlymoreefficient͑thesametrendisobservedforsplashingdisappearance͒.TheworseperformanceofT2isverylikelyduetothesquareshapeofthenozzleupstreamwiping,whichmakesitmoresentitivetothetiltangle.
472/Vol.129,APRIL2007
Fig.13DimensionlesssplashingcurvesforZ/dvalues,fortiltangles␣=0degand10deg
TransactionsoftheASME
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
Fig.14EffectofsurfacetensioninthepredictionoffinalzinccoatingthicknessongalvanizationlinesatZ/d=8andCa=0.0065„U=1.5m/s…
Fig.15Measuredandpredictedcoatingthicknessongalvani-zationlines
latterispredictedbytheknifemodel,inwhichcorrelations͑17͒and͑18͒foranobliquejetareused.Thisexercisewillbedoneforindustrialconditionsinthefollowingsection.
Therangecoveredbythedimensionlessparametersallowsavalidationoftheempiricalcorrelationswithgalvanizationlinedata.Indeed,itisfoundthat0.1ഛWeഛ1.8and50ഛReഛ250forthewatermodel,whileWeജ0.19–0.23andReജ120–150corre-spondtolineconditions.Thecapillarynumberrangeisgenerallylowerintheindustrialprocesswindow:0.004ഛCaഛ0.0125whileitisequalto0.07ഛCaഛ0.14onthelaboratoryfacility.
4ApplicationtoIndustrialConditions
Dependingonthedesiredfinalproduct,typicalwipingcondi-tionsingalvanizationincludeastripvelocitybetween50and170m/min,anozzlepressurebetween3and45kPa,toreachcoatingweightsMbetween50and140g/m2͑M=1000Znhf͒,thatistosayzincfilmthicknessesbetween5and20m.ThestandoffdistanceZislargeenoughtoavoidcontactbetweenthestripandthenozzle:8ഛZഛ14mm.Thenozzleslotistunedbe-tween0.8and1.2mm.TheliquidzincpropertiesareZn=6540kg/m3,Zn=0.0035Pas,andZn=0.7N/m.Typically,verythincoatingsarereservedtotheautomotiveindustry,whileheavycoatedproductsserveforfurnituresanddomesticappli-ances.
Theimportanceofsurfacetensionintypicalwipingconditionsongalvanizationlinesiscomparativelylowerthanonthewatermodelfacility.Althoughthecapillarynumbersarelower͑0.004ഛCaഛ0.012͒,thejetpressuregradientinnominalworkingcon-ditionsovercomeslargelythesurfacetensioneffect,asitcanbeseeninFig.14forCa=0.0065.Theknifemodelisthereforesuf-ficienttoprovidereliablepredictionsofthecoatingthickness.ThecoatingweightsmeasuredongalvanizationlinesareaspresentedversusknifemodelpredictionsinFig.15.Thein-linedataarebasedonthestatistictreatmentofalargenumberofmeasurementsondrysamples͑solidifiedzinc͒withathicknessgauge.Thestandarddeviationislowerthan0.5g/m2.Theinter-polationofthisdataforconstantcoatingweightsconstitutesasimplifiedmodelwhichisusedinpracticeonthelineremotecontrolsystems.TheempiricalcoefficientsforthecomputationofthewipingactuatorsٌPmaxandmaxareadjustedintheknifemodeltofitthemeasurementsinthehighercapillaryandWebernumberranges,thatistosaywhensurfacetensionhasthelowestJournalofFluidsEngineering
effect.Indeed,thereisnopossibilitytocharacterizetheindustrialnozzleslikeitwasdoneforlaboratorytests.Followingthisad-justment,theagreementbetweentheknifemodelandthemea-suredthicknessesremainsgood͑±4%͒overtheprocesswindowsforthedifferentcoatingweights.Aslightdeparture͑underestima-tionofupto15%͒fromthepredictionscanbedepictedinFig.15forhigherhf/h0values,forwhichsurfacetensionstartstobenon-negligible.Indeed,wipingconditionsforlargecoatingmassesgenerallyincludelownozzlepressures,andthereforelow-pressuregradientandshearstress.Insuchasituation,itcanbeanticipatedthatcapillaryeffectscomeupgradually.
Ongalvanizationlines,splashingistypicallyobservedforhighsubstratevelocities͑above150m/min͒andhighcoatingweights͑130–140g/m2͒atZ/dabout10.AlltheoperatingpointsofFig.15areplottedinFig.16togetherwiththedimensionlesssplashingcorrelationEq.͑21͒forthesymmetricnozzleT1.Mostoftheprocesspointswhichareinthenonsplashingregimearefoundtobebelowthecriticalcurve,whiletheonesforwhichsplashingis
Fig.16Typicalgalvanizationprocesspoints„stableandwithsplashing…withempiricalcorrelationforsplashingoccurrence
APRIL2007,Vol.129/473
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
Fig.17Parallelevolutionofsplashingandwipingat␣=0degand30degforaconstantcoatingthicknessof20m,ingalvanizationwithliquidzinc
Fig.18Evolutionoftheestimatedmaximumsubstratespeedbelowsplashingforthetwonozzlegeometries„Z/d؍10,hf=20m…ingalvanizationwithliquidzinc
observedarecorrectlypositionedabovethecurve.Theagreementisthereforegood,exceptforafewpointswhichareveryclosetocriticalconditions.Thisisnotsurprisingconsideringthatthelineprocessparametersareverydifficulttoassess.Thecurvecorre-spondingtothecriterionproposedbyYoneda͓5,17͔appearsalsoontheplot.HefindsthatthecriticaljetpressureP*nisafastdecreasingfunctionofthecapillarynumber,whichisconsistentwithexperimentalobservationswhenUrisesforagivenliquid.Inthatconditionsindeed,Caincreases,andonegetsclosertosplash-ing.However,whenplottedintermsofRe−We*withwaterandzincasworkingfluidsandusingtheknifemodelforhf,itisfoundthatthecriticalWe*increasesslightlywithRe͑Fig.16͒,instrongdisagreementwiththepresentexperimentaldata.Itisnotverysurprisingactuallythatthedropbreakupmodeldoesnotcomparewellwithsplashingdata,sincetheassumptionsofYoneda͓5,17͔areratherdistantfromtherealwipingconfiguration.
Finally,theparallelevolutionofsplashingandwipingatcon-stantfilmthicknessismonitored,inordertocomputetheopti-mumworkingpointintermsofsubstratespeedU.ThisexerciseisdoneinFig.17forgalvanizationconditionswhen␣variesfrom0degto30deg,andforacoatingthicknessof20m.ItappearsthatthemaximumlikelylinespeedU*beforefilmsprayingcanbesubstantiallyincreasedbytiltingdownwardsthenozzle.ThistrendisdetailedinFig.18,wheretheevolutionofU*isplottedversusthejetangle.Velocitygainsofuptoabout40%canbereachedwithnozzleT1,whileonly8%isobtainedwithT2,prob-ablyasaresultofitsdifferentperformancesbothinwipingandsplashing.Inindustrialconditionshowever,thenozzlecanhardlybetiltedofmorethan10deg,whichlimitsthevelocitygaintoabout12%.
pointsarealsowellpredicted,providedthatanadjustmentoftheempiricalcoefficientsdependingonthenozzlegeometryismade.Theknifemodelisthereforeanefficienttooltobeusedintheremotecontrolsystemofindustriallines.
Anexperimentalinvestigationofsplashinginjetwipingisthenundertaken.Thisphenomenonisfeaturedbyastronginstabilityoftherunbackflowleadingtotheejectionofdropletsthatmayim-pingeontheslotnozzle.Suchaneventconstitutesaseverelimi-tationtothewipingtechnique.
AnempiricalsplashingcorrelationexpressedintermsofthecriticaljetWebernumberandfilmReynoldsnumberisproposed.Verygoodagreementisfoundbetweenthesplashingcriterionandtheobservationsonindustriallines.
Comparingthesplashingandwipingmodelsatconstantcoatingthicknessleadstothedefinitionofanoptimumprocesswindow.Tiltingthenozzledownwarddelaystheoccurrenceofsplashing,andallowshigherlinespeed.Anetincreaseof40%ofthepro-ductivitycanbeexpectedwithatiltangleof30deg.Thenozzledesign,onwhichbothwipingandsplashingperformancesdepend,isshowntoinfluencestronglythesensitivityofthejettothetiltangle.
Acknowledgment
TheauthorsgratefullyacknowledgethefinancialsupportofAr-celor.
Nomenclature
RomanLetters
aϭsplashingcorrelationcoefficientbϭsplashingcorrelationcoefficient
bPϭdistancebetweenthejetaxisandthelocation
ofPs/2͑m͒
Cϭempiricalcoefficientforimpingingjetshear
stressestimation
Caϭfilmcapillarynumber,lU/lCpϭempiricalcoefficientCϭempiricalcoefficientdϭnozzleslotwidth͑m͒
gϭaccelerationofgravity͑ms−2͒hϭlocalfilmthickness͑m͒
TransactionsoftheASME
5Conclusions
Anoverallanalysisofthejetwipingtechniqueforthegalvani-zationprocessispresented.Atheoreticaldevelopmentforthemeanflowcomputationisfirstdiscussed.Itisextendedtoazero-dimensionalmodelforthedirectpredictionofthefilmthicknessafterwiping.Theimportanceofsurfacetensionisemphasized,anditisshownthatitcanbeneglectedinthetypicalwipingprocesswindowwhichisunderstudy.Insuchconditions,theknifemodelprovidesthicknesspredictionswhichcomparewellwiththeresultsofwipingexperiments.Typicalindustrialworking474/Vol.129,APRIL2007
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
hfLMnPPlPgPnPsQqRReRefRejˆTUuV0jVwjWeX
ϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭ
xϭyϭZϭZЈϭ
GreekLetters
␣ϭ⌫ϭϭϭϭϭϭϭϭϭ
filmthicknessafterwiping͑m͒stripwidth͑m͒
coatingweight,lhf͑kg/m2͒splashingcorrelationcoefficient
staticpressureatjetimpingement͑Pa͒pressureintheliquid͑Pa͒pressureinthegas͑Pa͒
nozzleexitdynamicpressure͑Pa͒
maximumpressureatthestagnationpointforanimpingingjet͑Pa͒
dimensionlessvolumetricflowratefilmvolumetricflowrate͑m3/s͒localfilmradiusofcurvature͑m͒filmReynoldsnumber,Uhf/l
filmReynoldsnumberbasedonthefilmveloc-ityinthereferentialofthesubstrateandthelocalthickness
jetReynoldsnumber,V0jd/lgdimensionlessshearstresssubstratevelocity͑m/s͒
liquidfilmlocalvelocity͑m/s͒jetexitvelocity͑m/s͒
characteristicwalljetvelocity͑m/s͒jetWebernumber,gV2wjh0/l
dimensionlessspatialcoordinateinthemovingsubstratedirection
spatialcoordinateinthemovingsubstratedi-rection͑m͒
spatialcoordinateinthedirectionnormaltothesubstrate͑m͒
nozzletosubstratedistance͑m͒
nozzletosubstratedistancealongthejetaxisforobliquejets͑m͒
nozzletiltangle͓deg͔
surfacetensionterm,h0/lgd3scalingfactor,2h/
characteristicwavelengthofxfluctuations͑m͒dynamicviscosity͑Pas͒kinematicviscosity͑m2/s͒
normalizedabsissaforjetimpingement,x/bPdensity͑kg/m3͒
surfacetension͑N/m͒
shearstressduetoimpingingjet͑Pa͒
lmaxopt0*ˆZnϭϭϭϭϭϭϭliquidmaximum
valuesatthelocationofthewipingpointwithoutwiping
criticalforsplashingdimensionlessquantitiesliquidzinc
References
͓1͔Thornton,J.A.,andGraff,M.F.,1976,“AnAnalyticalDescriptionoftheJet
FinishingProcessforHot-DipMetallicCoatingonStrip,”Metall.Trans.B,7B,pp.607–618.
͓2͔Tuck,E.O.,1983,“ContinuousCoatingwithGravityandJetStripping,”Phys.
Fluids,26,pp.2352–2358.
͓3͔Ellen,C.H.,andTu,C.V.,1984,“AnanalysisofJetStrippingofLiquid
Coatings,”J.FluidsEng.,106,pp.399–404.
͓4͔Tuck,E.O.,andvandenBroeck,J.-M.,1984,“InfluenceofSurfaceTensionon
JetStrippedContinuousCoatingofSheetMaterials,”AIChEJ.,30͑5͒,pp.808–811.
͓5͔Yoneda,H.,1993,“AnalysisofAir-KnifeCoating,”MasterofSciencedisser-tation,UniversityofMinnesota,Minneapolis,MN.
͓6͔Yoneda,H.,andScriven,L.E.,1994,“Air-KnifeCoating:Analysisofthe
BasicMechanism,”Proceedings7thSymposiumonCoatingProcessScienceandTechnologyattheAICHeSpringNationalMeeting,Atlanta,GA,April17–21.
͓7͔Buchlin,J.-M.,1997,“ModelingofGas-JetWiping,”ThinLiquidFilmsand
CoatingProcesses,VKILectureSeries,vonKarmanInstituteforFluidDy-namics,Brussels,Belgium.
͓8͔Lacanette,D.,Gosset,A.,Vincent,S.,Buchlin,J.-M.,Arquis,E.,andGardin,
P.,2006,“MacroscopicAnalysisofGas-JetWiping:NumericalSimulationandExperimentalApproach,”Phys.Fluids,18,042103.
͓9͔Beltaos,S.,andRajaratnam,N.,1976,“PlaneTurbulentImpingingJets,”J.
Hydraul.Res.,11,pp.29–59.
͓10͔Tu,C.V.,andWood,D.H.,1996,“MeasurementsBeneathanImpinging
PlaneJet,”Exp.Therm.FluidSci.,13,pp.3–373.
͓11͔Beltaos,S.,1976,“ObliqueImpingementofPlaneTurbulentJets,”J.Hydr.
Div.,102,pp.1177–1192.
͓12͔Gosset,A.,Rambaud,P.,Castellano,L.,Buchlin,J.-M.,andDubois,M.,2005,
“ModelingofGasJetWipingatSmallStandoffDistances,”Proc.ofEuropeanCoatingSymposium,UniversityofBradford,UK,Sept.6–9.
͓13͔Babu,P.C.,andMahesh,K.,2004,“UpstreamEntrainmentinNumerical
SimulationsofSpatiallyEvolvingRoundJets,”Phys.Fluids,16͑10͒,pp.3699–3705.
͓14͔Paras,S.V.,Vlachos,N.A.,andKarabelas,A.J.,1994,“LiquidLayerChar-acteristicsinStratified-AtomizationFlow,”Int.J.MultiphaseFlow,20,pp.939–956.
͓15͔Trabold,T.A.,andObot,N.T.,1997,“TheOnsetofSplashingfromFree
LiquidSurfacesExposedtoImpingingGasJets,”Proc.ASMEFluidsEng.Div.SummerMeeting,Vancouver,Canada,June22–28,paper3561.
͓16͔Tu,C.V.,andEllen,C.H.,1986,“StabilityofLiquidCoatingintheJet
StrippingProcess,”Proceedings9thAustralasianFluidMechanicsConfer-ence,Auckland,NewZealand,Dec.8–12,pp.316–319.
͓17͔Yoneda,H.,andScriven,L.E.,1994,“AnalysisofSprayGenerationinAir-KnifeCoating,”Proceedings7thSymposiumonCoatingProcessScienceandTechnologyattheAICHeSpringNationalMeeting,Atlanta,GA,April17–21.͓18͔Hinze,J.O.,1955,“FundamentalsoftheHydrodynamicsMechanismofSplit-tinginDispersionProcesses,”AIChEJ.,1,pp.2–295.
Subscripts/Superscripts
gϭgasjϭjet
JournalofFluidsEngineeringAPRIL2007,Vol.129/475
Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务