您好,欢迎来到刀刀网。
搜索
您的当前位置:首页热镀锌Jet Wiping in Hot-Dip Galvanization JFE 2007

热镀锌Jet Wiping in Hot-Dip Galvanization JFE 2007

来源:刀刀网
JetWipinginHot-DipGalvanization

e-mail:gosset@vki.ac.be

AnneGosset1

Jean-MarieBuchlin

e-mail:buchlin@vki.ac.be

vonKarmanInstituteforFluidDynamics(VKI),

ChausséedeWaterloo72,10Rhode-St-Genèse,Belgium

Thispaperpresentsananalysisofthegas-jetwipingprocessinhot-dipgalvanization.Thistechniqueconsistsofreducingtheliquidfilmthicknessonamovingsubstratebyapplyinggasslotjets.Atheoreticaldevelopmentallowsthecomputationofthefilmthicknessevolutioninthewipingzone.Itisfurthersimplifiedtoanengineeringmodelwhichpredictsdirectlythefinalcoatingthickness,ingoodagreementwithwipingexperi-ments.Thelimitofapplicabilityofjetwipingisduetotheoccurenceofaviolentfilminstability,calledsplashing,whichtakestheformofaliquiddropletemissionjustup-streamthenozzle.Anexperimentalinvestigationofthisphenomenonisconductedonawater-modelfacility.Twonozzledesignsaretested.Theeffectofprocessparameterssuchasthestripspeed,thenozzlepressure,thestandoffdistance,andthetiltangleofthenozzleonsplashingisemphasized.Adimensionlesscorrelationisestablishedtopredicttheoperatingconditionsleadingtosplashingoccurence.Itissuccessfullyconfrontedtoobservationsmadeongalvanizationlines.͓DOI:10.1115/1.2436585͔Keywords:coatingflows,thinfilms,gas-jetwiping,dropletformation,spray

1Introduction

Thedepositionofaverythinliquidfilmonasolidsurfaceisthebasisofnumerouscoatingtechniquesusedinindustrialpro-cessessuchaspaperandphotographicfilmmanufacturing,wirecoating,andintheironandsteelindustries.Inthecaseofhot-dipgalvanization,movingsteelstripsarecoatedwithathinlayerofzincinordertoresisttooxidization.Theprotectivemetalisap-pliedinitsliquidstate,bydippingthesubstrateintoabathofcoating.However,atcommonstripspeeds,theliquidlayerdraggedbythemovingwebisfartoothickandunevenfortheapplicationsconsidered.Thefinalcoatingthicknessisthereforecontrolledbytheapplicationoftwo-dimensionalhigh-speedgasjetsimpingingontheliquidlayer.Theyleadtotheformationofarunbackflowdowntothebath,leavingauniformandconstantcoatingthicknessdowsntreamonthesubstrate.Thisprocessisreferredtoasthejetwipingtechnique,orair-knifecoating,theprincipleofwhichisillustratedbytheschematicshowninFig.1.Thefilmthicknessafterwiping,hf,dependsonthesubstrateve-locityU,thenozzlepressurePn,thenozzletosubstratestandoffdistanceZ,thenozzleslotwidthd,andthenozzletiltangle␣,aswellastheliquidproperties.

Asthestripspeedincreases,thewipingtechniqueishoweverlimitedbytheoccurenceofaratherviolentfilminstabilitycalledsplashing,whichoccursupstreamthejetnozzle.Typicalvisual-izationofincipientsplashingonagalvanizationlineisshowninFig.2͑a͒,whileFigs.2͑b͒and2͑c͒demonstratethatthesplashingphenomenonisqualitativelywellreproducedonawatermodelfacility.Thismechanismischaracterizedbytheejectionofliquiddropletsfromtherunbackfilmflow,followedbyitscompleteexplosioninfullydevelopedstate.Splashingaffectsthefinalcoat-ingqualitybecausetherunbackflowseparatesfromthesubstratewhenitdevelops.Suchabehaviordegradessignificantlythewip-ingconditions͑pressuregradientandshearstressatjetimpinge-ment͒,andleadstounstableconditionsandtotheformationofzincdroplets.Theresultisaverypoorwipingefficiency,i.e.,thefilmthicknessislessefficientlyreducedforgivenoperatingcon-ditions,andapoorcoatingqualitydownstream.Moreover,theejecteddropletsmayreachthenozzleslit,andaftersolidification,

Correspondingauthor.

ContributedbytheFluidsEngineeringDivisionofASMEforpublicationintheJOURNALOFFLUIDSENGINEERING.ManuscriptreceivedApril24,2006;finalmanu-scriptreceivedDecember27,2006.Assoc.EditorTheodoreHeindel.

1

blockit.Inthecaseofgalvanization,thereisalsoasafetyconcernbecausethemoltenzincdropletsat460°Cmayreachtheworkersinchargeofremovingregularlythelayerofoxidizedzincatthefreesurfaceofthebath.

Itisthereforeofinteresttohaveatdisposalapredictivemodelforsplashingoccurrenceongalvanizationlines.Meanwhile,ama-jorpracticalconcernisthemaintenanceofhighproductionratesofconstantcoatingthicknessproducts.Therefore,thepredictionofthewipingefficiencyisnecessarytodefinecompletelyanop-timumprocesswindow.

Thispaperdescribesasimpleengineeringmodelforthefinalcoatingthicknessafterwiping.Itisvalidatedwithexperimentaldatainaprocesswindowinwhichsurfacetensioncanbene-glected.Aphenomenologicalapproachforthepredictionofsplashingoccurrenceisthenproposed.Adatabasegatheringsplashingconditionsforawiderangeofparametersonawatertestfacilityisusedforthederivationofadimensionlessempiricalmodelforsplashing.Theanalysisemphasizestheeffectofnozzletilting.Optimumprocesswindowscanthusbedefinedfromthecombinationofthewipingandsplashingmodels.Finally,theen-gineeringtoolsareappliedtotypicalgalvanizationconditions.

2JetWiping

Ananalyticalmodelisdevelopedforthepredictionofthefinalfilmthickness.Theeffectofnozzletiltingisincludedinthismodel.Itisvalidatedwithexperimentaldata.

2.1AnalyticalModel.Thefilminterfaceshapeinjetwipingisduetothepressuregradientandshearstressdistributionspro-ducedbytheimpingingjet͓1–3͔.TypicalprofilesofthewipingactuatorstogetherwiththeinterfaceshapeareshowninFig.3.Variousmodelsforthefilmthicknessprofileinthewipingregionareproposedinliterature.ThepioneerstudyinthisfieldistheonebyThorntonandGraff͓1͔,whoassumethattheinterfacedefor-mationisdueonlytothepressuregradientcreatedbytheimping-ingjetonthefilm.Itisconsideredasabodyforcesupplementinggravity.Tuck͓2͔adoptsasimilarapproach,andchecksthestabil-ityofthesolutionsforlongwavelengthperturbations.EllenandTu͓3͔proposeamodelwhichforthefirsttimetakestheshearstressintoaccount.Theyshowthatitparticipatesfor20–40%tothewipingaction.Tucketal.͓4͔quantifytheinhibitingeffectofsurfacetensiononjetwiping,whereasitisneglectedinpreviousstudies.Followingthis,Yoneda͓5,6͔presentsacompletenumeri-TransactionsoftheASME

466/Vol.129,APRIL2007Copyright©2007byASME

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig.3Typicalfilmshapeinjetwipingwithpressuregradientandshearstressprofilesduetothejet

Fig.1Schematicofthejetwipingoperationappliedtothegalvanizationprocess

calsolutionforthefilminterface,includingbothsurfacetensioneffectsandshearstress.Moreover,hepredictsthetransitionfrom“weak”air-knifeaction͑norunbackflow͒to“strong”action͑ef-fectivejetwiping͒.Finally,theoriginalityofthedevelopmentbyBuchlin͓7͔liesinthefactthatheproposesdifferentlevelsofsolutionofthemodel,accordingtotheassumptionsmade.For

instance,whensurfacetensionistakenintoaccount,hepresentsanumericalsolutionforthethicknessdistributioninthewipingregion.Whensurfacetensionisrelaxed,heshowsthataone-dimensionalanalyticalsolutionexists.Assumingfinallythatthemainwipingactuators͑firstmaximumpressuregradientandshearstressmetbythedraggedfilm͒actatthesamelocation,hepro-posestheideaofazero-dimensionalmodelpredictingdirectlythefinalfilmthickness.

Thetheoreticaldescriptionofgas-jetwipingisusuallybasedonthelubricationapproach,whichassumesnegligibleinertiawithrespecttoviscous,gravityandpressureterms.If͑Ox͒istheaxisalongthesubstrate,and͑Oy͒theoneacrossthesubstrate,itturnsoutthatinjetwiping,variationsalongthexdirectionareveryslowcomparedtovariationsalongyandtothefilmthickness.Thescalingfactor⑀=2␲h/␭Ӷ1canthusbeintroduced,wherehisthemeanfilmthickness,and␭isthecharacteristicwavelengthofaxfluctuation.Makingthechangeofvariablesx*=␧xandy*=y,theinertiatermsintheNavier–Stokesequationsarefoundtobeoforder⑀RefӶ␧.SincethefilmReynoldsnumberRefbasedonthefilmvelocityinthesubstratereferentialandonthemeanthicknessisverysmall,inertiacanbeneglected,andtheflowcanbeas-sumedparallel.Theresulting͑Ox͒momentumequationofthefilmstatesthattheshearstressbalancestheweightandpressure

ץ2udPl␮l2=␳lg+ץydxq=

͑1͒

͵h͑x͒

u͑x,y͒dy͑2͒

0

whereu͑x,y͒isthelocalfilmvelocity;h͑x͒isthelocalfilmthick-ness;␮land␳lare,respectively,theliquiddynamicviscosityand

density;gistheaccelerationofgravity;Plisthepressureintheliquid;andqisthefilmvolumetricflowrate.ThefilmisthinenoughtoassumethattheliquidpressurePlisequaltothegas-jetpressureatimpingementPgcorrectedbyasurfacetensiontermduetothemeniscusformation

dhxxdPldPg

=−␴l

3/2

dx͑1+h2dxdxx͒

ͫͬ͑3͒

Fig.2„a…Splashingphenomenononagalvanizationline;„b…

fullydevelopedsplashingwithwater;therunbackflowiscom-pletelyseparatedalongthestripwidth;and„c…sideviewvisu-alizationofsplashingwithwater

where␴listheliquidsurfacetension;andsubscriptxreferstoderivationwithrespecttox.Subscriptlreferstotheliquidphase,andsubscriptgtothegasphase.Thetermcontaining␴lrepresentsthecontributionofsurfacetensiontothepressuregradientjumpthroughthegas–liquidinterface.Themeanfilmcurvaturehxx/͑1

3/2+h2canbelinearizedtogethxxxonthegroundsthatthefreex͒

surfaceslopeissmall.TheboundaryconditionstobeassociatedwithEq.͑1͒expresstheno-slipconditionofthefilmonthesub-strate,andthecontinuityofshearstressattheinterface

u=U

at

y=0

͑4͒

JournalofFluidsEngineeringAPRIL2007,Vol.129/467

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

␮l

ץu

=␶͑x͒ץy

aty=h͑x͒͑5͒

where␶istheshearstressduetotheimpingingjetonthefilmfreesurface.Equation͑1͒togetherwithEqs.͑4͒and͑5͒canbereadilyintegratedtogivethefilmvelocityprofileu͑x,y͒fromwhichtheflowrateqisdeterminedthroughEq.͑2͒.Theresultingflowrateequationhasthefollowingnondimensionalform

ˆˆˆ2ˆ͑X͒d3hˆ͑X͒+2Q−3h−1.5Th=1+ٌPg

dX3ˆ3h

͑6͒

ˆThenormalizedvariablesaredefinedasfollows:X=x/d,h

=h/h0withh0=ͱ␮lU/␳lg;⌫=␴lh0/␳lgd3;Q=q/q0withq0

ˆ=␶/␶with␶=ͱ␮U␳g.Sub-ˆ=ٌP/␳g;andT=2/3Uh0;ٌPggl00ll

script0referstothedraggedfilmflowwithoutwiping.⌫isthedimensionlessparameterwhichmeasurestheinfluenceofsurfacetension͓4͔.ThoughthepressurePistheonlyfunctionofx,wechoosedeliberatelytouseٌPg͑x͒insteadofdPg/dxforconve-nienceinwriting.

Sincethepressuregradientandshearstressdistributionsduetothejetareusuallyassumedtobeknown,Eq.͑6͒hasbasicallytwo

ˆandflowrateQ.unknowns:thedimensionlessfilmthicknessh

Becauseitwasshownthatthepresenceoftheliquidfilmalmostdoesnotaffectthejetprofiles͓8͔,thepressuregradientandshearstressprofilesaregivenbyexperimentalornumericalsimulationofanimpingingjetonaflatplate͓9,10͔.Assuminganegligibleeffectofsurfacetension,whichwillbejustifiedlater,Eq.͑6͒canbefurthersimplifiedto

ˆ͒h−1.5Tˆh−3hˆ+2Q=0͑1+ٌP

ˆ2

ˆ3

͑7͒

Fig.4Comparisonofthedimensionlessvolumetricfilmflow

ratepredictedbytheknifemodelandvariousmodelsfromlit-eratureasafunctionofthedimensionlessjetpressuregradientforCa=0.01

C␶=−10−5Rej+0.129

͑13͒

wherePisnowtheliquidpressure,whichisequaltothegaspressure.ThesolutionofEq.͑7͒isobtainedbysolvinglocallythecubicequation,usingthepressuregradientandshearstressdistri-ˆ͑X͒andTˆ͑X͒ofanimpingingjetonaflatsurface.ItisbutionsٌP

generallyagreedthatthepressuredistributionatthewalliswelldescribedbyaGaussianlaw͓9,10͔

P͑␰͒=Pse−0.693␰2

Otherwise,C␶=0.067.

Inthewall-jetregion,theshearstressdistributionisbetterap-proximatedby͓9͔

␶͑␰͒=0.26

dPnRe0.2j

ͩͪͩͪ1

͉␰͉+4

1bP

͑14͒

͑8͒

wherePsisthemaximumpressureatthestagnationpoint;and␰=x/bP,wherebPisthedistancebetweenthejetaxisandthelocationofPs/2.Thepressuregradientprofileisthereforegivenbythefollowingexpression

ٌP͑␰͒=−1.386

Ps−0.693␰2−1.386␰e=␰P͑␰͒bPbP

͑9͒

PsandbParebothfunctionsofZandd.Whenthepotentialcore

impingesontotheplate͑Z/dഛ5͒,thestagnationpressureremainsconstantandequaltothejetpressurePn.ForZ/dϾ5,Psde-creaseswhenZ/dincreases

dPs

=Cp

ZPn

͑10͒

Insteadyconditions,continuityimpliesthattheliquidflowrate

Qisconstantthroughoutthewipingregion.Ontheotherhand,thefilmthicknesshvariesalongxwiththeٌP͑x͒and␶͑x͒distribu-tions.ThecubicEq.͑7͒,whichhastobesolvedforallxvalues,hastwo,ornopositiveroots.ThereexistsonlyonevalueofQforwhichthefilmthicknessevolutionisphysicallyacceptable.Itcor-respondstotheconditionwhenthederivativeofthefilmflowrate

ˆ=0͒,thatistosaywithrespecttothefilmthicknessisnull͑dQ/dh

whentheflowrateisoptimum.Azero-dimensionalmodel͑here-afterreferredtoastheknifemodel͒canbederivedfromEq.͑7͒,relyingontheobservationthatthepositionoftheupstreammaxi-mumpressuregradientandshearstresscorrespondsapproxi-matelytothelocationwherethefilmsurfacevelocityisequaltozero͑calledlocationoffilmsurfacebifurcation͓͒10͔.Therefore,weconsideronlythispositionwherethenetflowrateis“opti-mum”andnameitXopt.Equation͑7͒iswrittenatthatpositionto

ˆgiveEq.͑15͒,andthelocalfilmthicknessisnamedhopt

ˆ͒hˆ3ˆˆ2ˆ͑1+ٌPmaxopt−1.5Tmaxhopt−3hopt+2Q=0

͑15͒

Then,inordertosolveEq.͑15͒,asecondequationisfoundby

ˆ=0.usingthefactthatthenetflowrateisoptimum,i.e.,dQ/dh

ˆcanthusbefoundthroughEq.͑16͒Thevalueofhopt

ˆˆ2ˆTmax+Tmax+4͑1+ٌPmax͒ˆhopt=

ˆ͒2͑1+ٌPmax

withCpӍ6.5.

Intheimpingementregion,theshearstressprofilefitscloselythedistributiongivenby͓9͔

␶͑␰͒=␶max͓erf͑0.833␰͒−0.2␰e−0.693␰͔

2

͑11͒

whereerfistheerrorfunction.Foradevelopedimpingingjet͑Z/dϾ8͒,themaximumshearstressisgivenby͓9,10͔

ͱ

͑16͒

␶max=C␶͑Rej͒

PnZ/d

͑12͒

whereC␶isavaluedependingonthejetReynoldsnumberRejbasedonthenozzleslotwidthdandthejetexitvelocityV0j,whenitislowerthanabout6000468/Vol.129,APRIL2007

ThisvalueisreplacedinEq.͑15͒,andQisfound.Fardown-streamthewipingregion,thefilmthicknessbecomesconstantandequaltoitsfinalvaluehf.UsingthevalueofQandEq.͑2͒,hfiscomputed͑thevelocityprofileacrossthefilmisalmostuniformandequaltothesubstratevelocityUatthatpositions͒.

ThedifferentaforementionedmodelsarecomparedinFig.4,

TransactionsoftheASME

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

wheretheevolutionofthedimensionlessfilmflowrateQisplot-ˆtedasafunctionofthedimensionlesspressuregradientٌPmaxfor

acapillarynumberCa=␮lU/␴lequalto0.01.Ifpurewaterisconsideredastheworkingfluid,itcorrespondstoasubstrateve-ˆˆlocityU=0.67m/s.ThevaluesofٌPmaxandTmaxusedforthe

computationsinFig.4arebasedontheexperimentalcorrelationsEqs.͑9͒–͑14͒fromBeltaosetal.͓9͔.Thecomparisonofthemod-elsofThorntonetal.͓1͔andTuck͓2͔revealsthatthesurfacetensioneffectbecomesnegligiblebeyondacertainvalueofthepressuregradient;thejetactionthenovercomesthecapillaryforceinthewipingmeniscus.ThesameconclusionisreachedwhencomparingtheresultsofYoneda͓5,6͔withtheonesoftheknifemodel,whichbothtakeshearstressintoaccount,incontrasttothepreviouslycitedmodels.Asnotedpreviously,themodelproposedbyYoneda͓5,6͔predictsthejetthresholdbeyondwhichthefilmthicknessisreduced.ItappearsasthestraightlineportioninFig.4.

ItcanbethusinferredthattheknifemodelisperfectlyreliableforagivenCawhenthejetactionis“strong”͑comparedtocap-illarityinthemeniscus͒.Itshouldbenotedthatthefinalfilmthicknesshfwhichisobtainedveryquicklywiththezero-dimensionalknifemodeldiffersbygenerallylessthan1%fromthevaluefoundwhencomputingthewholethicknessdistributionwiththeone-dimensional͑1D͒modelEq.͑7͒.Acompletethick-nessprofilethusobtainedwasvalidatedwithnumericaldatafromvolumeoffluid-largeEddysimulation͑VOF-LES͒numericalsimulationsbyLacanetteetal.͓8͔forZ/d=8andajetpressurePn=1450Pa.Thepressuregradientandshearstressdistributionsusedforthe1Dmodelpredictionshavebeenmeasuredexperi-mentally͓8͔,andtheyfitcloselytheempiricalcorrelationsEqs.͑9͒–͑10͒and͑11͒–͑14͒fromtheliterature͓9͔.Thefilminterfaceshapesobtainedanalyticallyandwithtwo-phasesimulationsareingoodagreementbothinthemeniscusregionanddownstreamthejet,provingthatsurfacetensioncanbeneglectedinsuchcon-ditions.Thefilmthicknessafterwipinghfisunderestimatedofabout15%bythewipingmodelwithrespecttotheinterfaceob-tainednumerically.Upstreamtheimpingingzone,therunbackflowfromthe1Dmodelissignificantlythickerthanthesimulatedinterface.Thereasonforthatmaybethehighaspectratioofthemeshcellsinthatregion,inducingapoorspatialresolutionfortheinterfacedetectioninVOF-LESsimulations,orthefactthatthelubricationassumptionmadeintheanalyticalmodelisnotbevalidintherunbackflowregion.

2.2EffectofNozzleTilting.Whenthenozzleistilted,theimpingementangleofthejetinvolvesanasymmetryofthepres-sureandshearstressprofiles,andthusamodificationofthewip-ingactuators.Forthepurposeofsplashingdelaystudy,wewillconsideronlydownwardnozzletilting.Inthatcase,itisexpectedthattheusptreammaximumpressuregradientisreducedduetotheflatteningofthepressuredistribution.ExpressionsforٌPmaxand␶maxcanbederivedfromtheempiricalrelationsprovidedbyBeltaosforobliqueimpingingjets͓11͔.Itfollowsthat

ٌPmax=

5.712d

Pncos␣ZЈbP

͑17͒

Fig.5Schematicofthewaterjetwipingfacility

remainslowerthan30deg͓11͔.Beltaos͓11͔proposesavalueof

0.06fordevelopedimpingingjets͑Z/dϾ8͒.Themaximumshearstressforatiltedjetthereforevariesincos␣.

ThepressuregradientbeingthemainactuatorfortheZ/dval-uesconsideredinthepresentstudy,itmaybeexpectedthattheoverallwipingefficiencyislowerwhenthejetistilteddownward.2.3ValidationWithExperimentalData.Theknifemodelhastheadvantageofbeingverysimpleandfasttoimplement.Itsuseforthepresentinvestigationandinindustrialconditionsre-quiresitsvalidationwithexperimentaldata,inverywellcon-trolledconditions.

2.3.1ExperimentalSetupandTechniques.Therefore,wipingexperimentsareperformedonadedicatedwatermodelfacility,whichsimulatesagalvanizationline.Figure5showsaschematicofthesetup,whichincludesaverticalrubberstrip5mlongand0.5mwide,stretchedbetweentworolls.Thestripissetintomo-tionbytheupperroll,whichisentrainedbyanelectricmotor.Thestripvelocitycanbeadjustedintherange0.5–4.5m/s,anditismeasuredusingatachometer.Thesubstratedipsinabathofwa-ter,towhichasurfactantwasaddedtoensureagoodwettability.Thewatersurfacetensionthusdropsto0.03N/m±0.001N/m.Normally,surfactantmaterialstendtoremainatthefreesurfaceofaliquid,andsurfacetensiongradientsmayoccur.However,thecapillarynumbersremainsufficientlylowheresothatsuchaneffectisnotfelt.Moreover,thewipingprocessensuresacontinu-ousmixingoftheworkingfluidandsurfactant.Theslotnozzleispositionedat0.8mabovethefreesurfaceofthebath.Itstiltangleisadjustable,andthestandoffdistanceZbetweenthenozzleandthestripistunedthankstoshimswithin±0.1mm.Twonozzlegeometriesaretested.TheyaresketchedinFig.6,togetherwiththeirmaingeometricalcharacteristics.NozzleT1isfullysymmet-ric,whileT2exhibitsabottomclearingandamoreconfinedge-ometry.Theyareboth0.6mwidetoavoidedgeeffects.The

ZЈisthenozzletowalldistancealongthejetaxis,suchthatZ͑␣=0deg͒=ZЈcos␣.ThequantitybP/Zisgivenbyanempiri-calrelation͓11͔,andisalmostinsensitiveto␣foranglessmallerthan30deg.Themaximumpressuregradienthasthereforeanevolutionincos2␣.

Theshearstress␶maxcanbeapproximatedbythefollowingexpression͓11͔

␶max=C*͑␣͒

PndZЈ

͑18͒

Fig.6Nozzledesigns

whereC*isacoefficientwhichdependsonthenozzlegeometry,andisshowntobealmostinsensitivetothejetangle␣whenitJournalofFluidsEngineering

APRIL2007,Vol.129/469

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

nozzleisfedwithcompressedairupto10kPa.Theslotwidthdcanbeadjustedbetween0.7mmand2.1mmwithin±0.005mm.Inalltheexperimentspresentedhere,d=1.4mm.Forsakeofsimplicity,thewipingmechanismisstudiedonlyononeside.Toensureagoodstabilityofthestripintheimpactzone,therearfaceisslidingonanaluminumplatelubricatedbytheentrainedwater.Themeanliquidfilmthicknessinspaceandtimeisdeterminedfromthemeasuredmassflowrateafterwipingq

hf=

q␳lLU

͑19͒

whereListhestripwidth.Theassumptionofauniformvelocityprofileacrosstheliquidfilmintroducesanerroroflessthan0.1%onhf,withrespecttothevaluecomputedwiththerealfilmve-locityprofilecomputedfromEq.͑1͒.Theliquidfilmiswithdrawnatthetopofthebandbytheactionofarubberscrapercombinedtoasuckingapparatusbasedonairejectors.Twolateralsmalljetsdrawtheliquidfilmtowardssuctionports,whichareconnectedtoacycloneseparator.Abalancemeasurestheamountofcollectedwater,andastopwatchtheweightingtime.Dependingontheflowrate,themeasuringtimerangesbetween1and6min.Eachex-perimentisrepeatedfivetimes.Theuncertaintyonthemeanvalue

2

ofameasurandXisgivenbyU=ͱB2+͑tS¯X͒,whereBisthebias

¯error,S¯XistheprecisionindexofthemeanX,andtistheStudent

valuewhichisafunctionofthedegreesoffreedomusedincal-culatingS¯X.Forthepresentmeasurements,tisequalto2.776foraconfidenceintervalof95%.Theflowratestandarddeviationoverrepeatedmeasurementsisanincreasingfunctionofqf͑higherflowratesaremoredifficulttomeasure͒anditisoftheorderof±0.5%,whichgivesaprecisionindexof±1.4%with95%confidence.Thebiaserroronthefilmflowrateisestimatedto±5.10−5kg/s,fromwhichwefinallygetqf±5.2%fortheoveralluncertainty.Asforthestripvelocity,itsuncertaintyis±0.6%at95%confidencelevel,innominalwipingconditions.Thepreci-sionindexonhfistherefore±0.5%andthebiaserrorabout±5%,whichgivesafinaluncertaintyof±5.2%at95%confidence.Theuncertaintyonthenormalizedfilmthicknesshf/h0andfilmRey-noldsnumberReisalsoabout±5.2%.Theuncertaintyonthejetpressureisabout±6Pa,whiletheoneonZ/disestimatedto±4%.

2.3.2Validation.TheimportanceofcapillaryeffectsinthepredictionofthefinalfilmthicknessisillustratedinFig.7,forawaterfilmflow.ThestandoffdistancebetweenthenozzleandthesubstrateisZ/d=10,andthestripvelocityis1.5m/s,which

ˆ,givesacapillarynumberof0.055.AtthelowestvaluesofٌPmax

theknifemodelunderestimatesthefilmthickness͑normalizedbythefilmthicknesswithoutwipingh0͒ofalmost35%withrespecttotheexperimentalvalues,whilethecompletemodelofYoneda͓5,6͔succeedsinprovidingreasonablevalues͑overestimationof9%atmost͒.Soitcanbeassertedwithsomeconfidencethatthediscrepancybetweentheknifemodelandthemeasurementsismainlyduetotheomissionofsurfacetension.Asthejetpressuregradientincreases,theknifemodelpredictionbecomesmoreac-curate,untilitalmostmatchesthemeasurementsstartingfromˆٌPmax=40approximately.Itshouldbepointedoutthatweareinterestedprimarilyinthewipingefficiencyintheneighborhoodofsplashingconditions,wherethecapillarynumberrangesfrom0.07to0.14,thuswheresurfacetensionhasalowereffect.More-over,closetosplashing,thejetpressuregradientactionover-comeslargelythecapillaryeffects,andtheknifemodelisex-pectedtogiveaccuratepredictionsforhf.

TypicalresultsfornozzleT1inconditionswheresurfaceten-sionhaslittleeffectareshowninFig.8,wherethenozzledy-namicpressurePniskeptconstant͑Pn=1450Pa,whichcorre-spondstoajetReynoldsnumberRejof4500͒,whilethestandoffdistanceZ/dvariesbetween2and14.Theknifemodelpredic-tionsandthemeasurementsareingoodagreement͑within5–9%͒,470/Vol.129,APRIL2007

Fig.7EffectofsurfacetensioninthepredictionoffinalfilmthicknessatZ/d=10andCa=0.055

exceptforlargeZ/dwhereitcanbeanticipatedthatthepressuregradientstartstobetooweaktoneglectcapillarity͑16%under-estimationofhf/h0͒.ThewipingplateauuntilZ/dӍ8iswellrecoveredbytheanalyticalmodel.Itisduetothespecificbehav-iorofthewipingactuatorsٌPmaxand␶maxintheregionofthepotentialcore͓10,12͔.ThemoreimportantunderestimationofhfatZ/d=12illustratestherisingeffectofsurfacetensionwhichbecomesnon-negligibleduetothelargestandoffdistance.TheuncertaintyofthethicknesspredictionhereliesmainlyintheuncertaintyoftheexperimentalornumericalestimationofٌPmaxand␶max.Inthepresentstudy,weusetheresultsofapriorchar-acterizationofnozzleT1onaflatsurface,performedduringaparallelexperimentalstudy͓12͔.Thefacilityusedforthisinves-tigationconsistsofaninstrumentedplateonwhichthejetim-pingesnormally.BydisplacingthisplateequippedwithastaticpressureholeandStantonprobes,thepressureandshearstressdistributionsatimpingementaremeasured.Theuncertaintyonthe

Fig.8Comparisonoffilmthicknessafterwipingobtainedex-perimentally,andpredictedbytheknifemodelforRej=4500andU=1.5m/s

TransactionsoftheASME

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig.9Experimentalwipingcurvesforthetwonozzlegeom-etriesT1andT2atZ/d=10andU=1.5m/s

Fig.10EvolutionofnormalizedfinalfilmthicknesswiththenozzletiltingangleatconstantRej=5100fordifferentZ/dvalues

wipingactuatorsisestimatedto±4%forthepressuregradient,andpresumablymorethan±10%fortheshearstress,duetothefavorablepressuregradientwhichstronglyaffectstheStantonprobemeasurements͓8͔.Asensitivitystudyoftheknifemodelshowsthatthesevaluesleadtoafinal±6%uncertaintyonthethicknesshf.ItwasalsoshownbyLacanetteetal.͓8͔thattheresultsofVOF-LESnumericalsimulationstakingfullyintoac-countthesurfacetensioneffectsareinreasonableagreementwiththemeasurementsandmodelpredictions,exceptforsmallZ/ddistances͑Z/dഛ4͒,wheretheimportantunderestimationofhfisprobablyduetoanoverestimationofٌPmaxand␶max.Thelatteristypicalofanartificialconfinementproducedbythedomainboundariesinimpingingjetsnumericalsimulations͓13͔.

TypicalexperimentalwipingcurvesobtainedbyvaryingthenozzledynamicpressurePnatconstantZ/d=10areshowninFig.9.ItappearsthatnozzleT2isabout15%moreefficientinwipingthanT1,thatistosayforaconstantnozzlepressurePn,thefinalfilmthicknessis15%lowerwithT2thanwithT1.Thenozzleexternalandinternalgeometriesseemthereforetohaveanon-negligibleinfluenceonthewipingactuatorsٌPmaxand␶max.Thiscouldbequantifiedbycharacterizingtheimpingingjetproducedbyvariousnozzlegeometriesonaflatplate.Sincewipingeffi-ciencyiscontrolledbytheupstreammaximumpressuregradientandshearstress,wecanspeculatethatthesewipingactuatorsaremodifiedbythesquarecornershapeofT2,whichisfavorabletoflowrecirculations.

Finally,theeffectofnozzletiltingwhichisincludedintheknifemodelinSec.2.2isvalidatedbyexperimentsinFig.10,forajetReynoldsnumberof5100,attwodifferentsubstratespeedsU=1.5m/sand2m/s.Asitcouldbeexpected,thewipingeffi-ciencydropsmoreimportantlywiththetiltanglewhenthestand-offdistanceZ/dislarge.BecausethejetismoredevelopedatimpingementwhenZ/dislarger,thepressuregradientandshearstress͑andthusthewipingefficiency͒aremoresensitivetothetiltangle.Thepredictionsoftheknifemodelareinagreementwithin±7%withthemeasurements,whichisconsideredacceptableforthemodelvalidation.Itwillthusbeusedforthefuturewipingpredictionsatconstantcoatingthickness.

throughaphenomenologicalapproachoftheproblem.Anexperi-mentaldatabaseisusedforthefindingofanempiricalmodeltopredictsplashing.

3.1PhenomenologicalApproach.Theejectionofdropletsfromliquidfreesurfacesexposedtogasflowshasbeenexten-sivelystudiedinbasicconfigurations:shearedliquidfilmsonpipewalls͓14͔,stillliquidfreesurfacesimpingedbyroundjets͓15͔.However,thereexistveryfewstudiesaboutsplashinginthecon-textofjetwiping.Thisfilmsprayingmechanismmaybeseenastheultimatedevelopmentofafilminstability͓16͔,whoseampli-ficationfactormaybehighenoughsothatatomizationoccurs.Yoneda͓5,17͔usesHinze’sdropbreakupmodelinturbulentgasflow͓18͔toderiveacriterionforsplashinginjetwiping.Infact,Yoneda͓5,17͔seestheliquid“bump”formedbythewipingme-niscusasadropletofdiameter͑2h0−hf͒,whichissubjectedtoaparallelincominggasflow.Tothisextent,theproblemcanberelatedtothebreakupofasingledropletinaturbulentflow,andYoneda͓5,17͔postulatesthatthecriticalconditionsfordropletdisintegrationintosmallerdropletsarethoseofsplashingoccur-rence.Asatypicallengthforthecapillarycontribution,hechoosesthequantity͑2h0−hf͒,forwhichhegetsacorrelationdependingonthefilmcapillarynumberCaandjetpressurePn.HeendsupwithasplashingcriterionintermsofCaandcriticaljetpressureP*n.Amoreempiricalapproachisattemptedheretoiden-tifythewipingconditionsthatmayallowretardingsplashing.Thepresentmodelingpostulatesthattheonsetofsplashingoc-curswhenthesheareffectproducedbythedownwardgaswalljetovercomesthestabilizingeffectofsurfacetensionmodeledhereby␴l/R,whereRisthemeniscusradiusofcurvature.Thelattercanbeapproximatedby͑2h0−hf͒,asdepictedinFig.3,butsincehfӶ2h0,wechooseRӍ2h0.Expressingthewallshearstressin

2

,where␳isthetermsofdynamicpressureofthewalljet͑0.5␳Vwj

gasdensity,andVwjisatypicalwall-jetvelocity͒,andevaluatingtheratioofthedominatingforcescontrollingthesplashingmechanismleadstotheeffectivejetWebernumberWe

2

h0/␴l.ThecriticalWebernumberWe*abovewhich=␳gVwj

splashingdevelopsiscorrelatedwiththefilmReynoldsnumberbasedonthestripvelocity,U,andthefinalcoatingthicknessRe=Uhf/␯l.Thewalljetvelocity,Vwj,ismodeledbythefollowingrelation,whichincludestheeffectofnozzletilting͓11͔

APRIL2007,Vol.129/471

3Splashing

Thesplashingphenomenonoccurringupstreamthewipingjetisnowinvestigated.TypicaldimensionlessparametersarederivedJournalofFluidsEngineering

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig.11DimensionlesssplashingcurvesforZ/d=10,nozzleT1

Fig.12DimensionlesssplashingcurvesforZ/d=10,nozzleT2

Vwj=

V0j

ͱ1+sin␣Z/d

͑20͒

Figure13pointsoutthatthenormalizedstandoffdistanceZ/ddoesnotaffectsubstantiallythesplashingcorrelation,whichinturncanbeformulatedasfollows

We*=e͑a␣+b͒Re−n

͑21͒

Thevalueofcoefficientsaandbaswellastheexponentndependsonthenozzledesign.ForT1,a=0.043,b=5.5,andn=1.44,whileforT2,a=0.018,b=7.9,andn=1.91.ThedifferentcoefficientsforT1andT2incorrelation͑21͒resultfromacom-binationofthedifferentperformancesofT1andT2inwipingandsplashing.TheimprovementofthecoatingwindowreachedbytiltingthenozzledownwardcanbequantifiedbythenetincreaseofthestripspeedU,whichisobtainedforagivenhfvalue.Toevaluatethisenhancement,anoptimumoperatingpointisdefinedasthehighestproductivityconditionbelowsplashing.Itcorre-spondstotheintersectionbetweenthesplashingcriticalcurvegivenbyEq.͑21͒andthewipingcurveatconstantthickness.The

Itcanbeanticipatedthatdownwardtiltingofthenozzledelaystheoccurrenceofsplashing.Indeed,thetendencyofthejetstreamlinestoimpactnormallyonthefilminspiteofitsobliquepositionmightforcethefilmtosticktothesubstratejustbelowthestagnationpoint.Thisintuitionwasconfirmedbypreliminarytests.

Ithastobeseennowwhetherthelossofwipingefficiencyinducedbyjetdownwardtiltingcompensatesforthesplashingdelayatconstantfilmthickness.

3.2EmpiricalModel.Thesplashingexperimentsareper-formedonthefacilitydescribedinSec.2.3.1.Theyconsistofthevisualdetectionofsplashingfordifferentwipingconditions.Atconstantjetpressure,thesubstratevelocityisincreaseduntilsplashingoccursinitsfullydevelopedstatealongthestrip.Anhysteresisphenomenonisobserved:thesubstratespeedatwhichsplashingdisappearsisonaverage7%lowerthantheoneatwhichitappears.Wewillonlyconsidersplashingappearancehere.Thesplashingtestsaresystematicallyrepeatedfivetimes.Atfirst,twoobserversreproducedindependentlythesameexperi-ments,andthedifferenceintheresultswasfoundnottoexceed

*

͑U*max−Umin͒overasetoffivetestsperformedbyasingleexperi-menter.ThestandarddeviationofthedetectedcriticalvelocityU*is±2%.ThebiaserroronUbeingof0.006m/s,thefinaluncer-taintyonU*isoftheorderof3%at95%confidence.Thepropa-gationofaforementionederrorsleadtoafinal±6.5%uncertaintyonReand±11%onWe*insplashingconditions.

Figure11showstheevolutionofcriticalconditionsintermsofRe−We*stabilitycurvesforthesymmetricnozzleT1.Splashingoccursabovethecurve,whilejetwipingisstablebelowthecurve.Asexpected,downwardnozzletiltingallowsdelayingsplashing.Splashingdelaymeansthatsplashingoccursathigherstripspeedsforaconstantnozzlepressure.ThecomparisonwithFig.12forT2revealsthatintermsofsplashing,thenozzlegeometrydoesnotmodifymuchthecriticalconditions,atleastforlowertiltingangles.For␣=30deg,itseemsthatT1isslightlymoreefficient͑thesametrendisobservedforsplashingdisappearance͒.TheworseperformanceofT2isverylikelyduetothesquareshapeofthenozzleupstreamwiping,whichmakesitmoresentitivetothetiltangle.

472/Vol.129,APRIL2007

Fig.13DimensionlesssplashingcurvesforZ/dvalues,fortiltangles␣=0degand10deg

TransactionsoftheASME

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig.14EffectofsurfacetensioninthepredictionoffinalzinccoatingthicknessongalvanizationlinesatZ/d=8andCa=0.0065„U=1.5m/s…

Fig.15Measuredandpredictedcoatingthicknessongalvani-zationlines

latterispredictedbytheknifemodel,inwhichcorrelations͑17͒and͑18͒foranobliquejetareused.Thisexercisewillbedoneforindustrialconditionsinthefollowingsection.

Therangecoveredbythedimensionlessparametersallowsavalidationoftheempiricalcorrelationswithgalvanizationlinedata.Indeed,itisfoundthat0.1ഛWeഛ1.8and50ഛReഛ250forthewatermodel,whileWeജ0.19–0.23andReജ120–150corre-spondtolineconditions.Thecapillarynumberrangeisgenerallylowerintheindustrialprocesswindow:0.004ഛCaഛ0.0125whileitisequalto0.07ഛCaഛ0.14onthelaboratoryfacility.

4ApplicationtoIndustrialConditions

Dependingonthedesiredfinalproduct,typicalwipingcondi-tionsingalvanizationincludeastripvelocitybetween50and170m/min,anozzlepressurebetween3and45kPa,toreachcoatingweightsMbetween50and140g/m2͑M=1000␳Znhf͒,thatistosayzincfilmthicknessesbetween5and20␮m.ThestandoffdistanceZislargeenoughtoavoidcontactbetweenthestripandthenozzle:8ഛZഛ14mm.Thenozzleslotistunedbe-tween0.8and1.2mm.Theliquidzincpropertiesare␳Zn=6540kg/m3,␮Zn=0.0035Pas,and␴Zn=0.7N/m.Typically,verythincoatingsarereservedtotheautomotiveindustry,whileheavycoatedproductsserveforfurnituresanddomesticappli-ances.

Theimportanceofsurfacetensionintypicalwipingconditionsongalvanizationlinesiscomparativelylowerthanonthewatermodelfacility.Althoughthecapillarynumbersarelower͑0.004ഛCaഛ0.012͒,thejetpressuregradientinnominalworkingcon-ditionsovercomeslargelythesurfacetensioneffect,asitcanbeseeninFig.14forCa=0.0065.Theknifemodelisthereforesuf-ficienttoprovidereliablepredictionsofthecoatingthickness.ThecoatingweightsmeasuredongalvanizationlinesareaspresentedversusknifemodelpredictionsinFig.15.Thein-linedataarebasedonthestatistictreatmentofalargenumberofmeasurementsondrysamples͑solidifiedzinc͒withathicknessgauge.Thestandarddeviationislowerthan0.5g/m2.Theinter-polationofthisdataforconstantcoatingweightsconstitutesasimplifiedmodelwhichisusedinpracticeonthelineremotecontrolsystems.TheempiricalcoefficientsforthecomputationofthewipingactuatorsٌPmaxand␶maxareadjustedintheknifemodeltofitthemeasurementsinthehighercapillaryandWebernumberranges,thatistosaywhensurfacetensionhasthelowestJournalofFluidsEngineering

effect.Indeed,thereisnopossibilitytocharacterizetheindustrialnozzleslikeitwasdoneforlaboratorytests.Followingthisad-justment,theagreementbetweentheknifemodelandthemea-suredthicknessesremainsgood͑±4%͒overtheprocesswindowsforthedifferentcoatingweights.Aslightdeparture͑underestima-tionofupto15%͒fromthepredictionscanbedepictedinFig.15forhigherhf/h0values,forwhichsurfacetensionstartstobenon-negligible.Indeed,wipingconditionsforlargecoatingmassesgenerallyincludelownozzlepressures,andthereforelow-pressuregradientandshearstress.Insuchasituation,itcanbeanticipatedthatcapillaryeffectscomeupgradually.

Ongalvanizationlines,splashingistypicallyobservedforhighsubstratevelocities͑above150m/min͒andhighcoatingweights͑130–140g/m2͒atZ/dabout10.AlltheoperatingpointsofFig.15areplottedinFig.16togetherwiththedimensionlesssplashingcorrelationEq.͑21͒forthesymmetricnozzleT1.Mostoftheprocesspointswhichareinthenonsplashingregimearefoundtobebelowthecriticalcurve,whiletheonesforwhichsplashingis

Fig.16Typicalgalvanizationprocesspoints„stableandwithsplashing…withempiricalcorrelationforsplashingoccurrence

APRIL2007,Vol.129/473

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig.17Parallelevolutionofsplashingandwipingat␣=0degand30degforaconstantcoatingthicknessof20␮m,ingalvanizationwithliquidzinc

Fig.18Evolutionoftheestimatedmaximumsubstratespeedbelowsplashingforthetwonozzlegeometries„Z/d؍10,hf=20␮m…ingalvanizationwithliquidzinc

observedarecorrectlypositionedabovethecurve.Theagreementisthereforegood,exceptforafewpointswhichareveryclosetocriticalconditions.Thisisnotsurprisingconsideringthatthelineprocessparametersareverydifficulttoassess.Thecurvecorre-spondingtothecriterionproposedbyYoneda͓5,17͔appearsalsoontheplot.HefindsthatthecriticaljetpressureP*nisafastdecreasingfunctionofthecapillarynumber,whichisconsistentwithexperimentalobservationswhenUrisesforagivenliquid.Inthatconditionsindeed,Caincreases,andonegetsclosertosplash-ing.However,whenplottedintermsofRe−We*withwaterandzincasworkingfluidsandusingtheknifemodelforhf,itisfoundthatthecriticalWe*increasesslightlywithRe͑Fig.16͒,instrongdisagreementwiththepresentexperimentaldata.Itisnotverysurprisingactuallythatthedropbreakupmodeldoesnotcomparewellwithsplashingdata,sincetheassumptionsofYoneda͓5,17͔areratherdistantfromtherealwipingconfiguration.

Finally,theparallelevolutionofsplashingandwipingatcon-stantfilmthicknessismonitored,inordertocomputetheopti-mumworkingpointintermsofsubstratespeedU.ThisexerciseisdoneinFig.17forgalvanizationconditionswhen␣variesfrom0degto30deg,andforacoatingthicknessof20␮m.ItappearsthatthemaximumlikelylinespeedU*beforefilmsprayingcanbesubstantiallyincreasedbytiltingdownwardsthenozzle.ThistrendisdetailedinFig.18,wheretheevolutionofU*isplottedversusthejetangle.Velocitygainsofuptoabout40%canbereachedwithnozzleT1,whileonly8%isobtainedwithT2,prob-ablyasaresultofitsdifferentperformancesbothinwipingandsplashing.Inindustrialconditionshowever,thenozzlecanhardlybetiltedofmorethan10deg,whichlimitsthevelocitygaintoabout12%.

pointsarealsowellpredicted,providedthatanadjustmentoftheempiricalcoefficientsdependingonthenozzlegeometryismade.Theknifemodelisthereforeanefficienttooltobeusedintheremotecontrolsystemofindustriallines.

Anexperimentalinvestigationofsplashinginjetwipingisthenundertaken.Thisphenomenonisfeaturedbyastronginstabilityoftherunbackflowleadingtotheejectionofdropletsthatmayim-pingeontheslotnozzle.Suchaneventconstitutesaseverelimi-tationtothewipingtechnique.

AnempiricalsplashingcorrelationexpressedintermsofthecriticaljetWebernumberandfilmReynoldsnumberisproposed.Verygoodagreementisfoundbetweenthesplashingcriterionandtheobservationsonindustriallines.

Comparingthesplashingandwipingmodelsatconstantcoatingthicknessleadstothedefinitionofanoptimumprocesswindow.Tiltingthenozzledownwarddelaystheoccurrenceofsplashing,andallowshigherlinespeed.Anetincreaseof40%ofthepro-ductivitycanbeexpectedwithatiltangleof30deg.Thenozzledesign,onwhichbothwipingandsplashingperformancesdepend,isshowntoinfluencestronglythesensitivityofthejettothetiltangle.

Acknowledgment

TheauthorsgratefullyacknowledgethefinancialsupportofAr-celor.

Nomenclature

RomanLetters

aϭsplashingcorrelationcoefficientbϭsplashingcorrelationcoefficient

bPϭdistancebetweenthejetaxisandthelocation

ofPs/2͑m͒

Cϭempiricalcoefficientforimpingingjetshear

stressestimation

Caϭfilmcapillarynumber,␮lU/␴lCpϭempiricalcoefficientC␶ϭempiricalcoefficientdϭnozzleslotwidth͑m͒

gϭaccelerationofgravity͑ms−2͒hϭlocalfilmthickness͑m͒

TransactionsoftheASME

5Conclusions

Anoverallanalysisofthejetwipingtechniqueforthegalvani-zationprocessispresented.Atheoreticaldevelopmentforthemeanflowcomputationisfirstdiscussed.Itisextendedtoazero-dimensionalmodelforthedirectpredictionofthefilmthicknessafterwiping.Theimportanceofsurfacetensionisemphasized,anditisshownthatitcanbeneglectedinthetypicalwipingprocesswindowwhichisunderstudy.Insuchconditions,theknifemodelprovidesthicknesspredictionswhichcomparewellwiththeresultsofwipingexperiments.Typicalindustrialworking474/Vol.129,APRIL2007

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

hfLMnPPlPgPnPsQqRReRefRejˆTUuV0jVwjWeX

ϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭϭ

xϭyϭZϭZЈϭ

GreekLetters

␣ϭ⌫ϭ␧ϭ␭ϭ␮ϭ␯ϭ␰ϭ␳ϭ␴ϭ␶ϭ

filmthicknessafterwiping͑m͒stripwidth͑m͒

coatingweight,␳lhf͑kg/m2͒splashingcorrelationcoefficient

staticpressureatjetimpingement͑Pa͒pressureintheliquid͑Pa͒pressureinthegas͑Pa͒

nozzleexitdynamicpressure͑Pa͒

maximumpressureatthestagnationpointforanimpingingjet͑Pa͒

dimensionlessvolumetricflowratefilmvolumetricflowrate͑m3/s͒localfilmradiusofcurvature͑m͒filmReynoldsnumber,Uhf/␯l

filmReynoldsnumberbasedonthefilmveloc-ityinthereferentialofthesubstrateandthelocalthickness

jetReynoldsnumber,V0jd/␯lgdimensionlessshearstresssubstratevelocity͑m/s͒

liquidfilmlocalvelocity͑m/s͒jetexitvelocity͑m/s͒

characteristicwalljetvelocity͑m/s͒jetWebernumber,␳gV2wjh0/␴l

dimensionlessspatialcoordinateinthemovingsubstratedirection

spatialcoordinateinthemovingsubstratedi-rection͑m͒

spatialcoordinateinthedirectionnormaltothesubstrate͑m͒

nozzletosubstratedistance͑m͒

nozzletosubstratedistancealongthejetaxisforobliquejets͑m͒

nozzletiltangle͓deg͔

surfacetensionterm,␴h0/␳lgd3scalingfactor,2␲h/␭

characteristicwavelengthofxfluctuations͑m͒dynamicviscosity͑Pas͒kinematicviscosity͑m2/s͒

normalizedabsissaforjetimpingement,x/bPdensity͑kg/m3͒

surfacetension͑N/m͒

shearstressduetoimpingingjet͑Pa͒

lmaxopt0*ˆZnϭϭϭϭϭϭϭliquidmaximum

valuesatthelocationofthewipingpointwithoutwiping

criticalforsplashingdimensionlessquantitiesliquidzinc

References

͓1͔Thornton,J.A.,andGraff,M.F.,1976,“AnAnalyticalDescriptionoftheJet

FinishingProcessforHot-DipMetallicCoatingonStrip,”Metall.Trans.B,7B,pp.607–618.

͓2͔Tuck,E.O.,1983,“ContinuousCoatingwithGravityandJetStripping,”Phys.

Fluids,26,pp.2352–2358.

͓3͔Ellen,C.H.,andTu,C.V.,1984,“AnanalysisofJetStrippingofLiquid

Coatings,”J.FluidsEng.,106,pp.399–404.

͓4͔Tuck,E.O.,andvandenBroeck,J.-M.,1984,“InfluenceofSurfaceTensionon

JetStrippedContinuousCoatingofSheetMaterials,”AIChEJ.,30͑5͒,pp.808–811.

͓5͔Yoneda,H.,1993,“AnalysisofAir-KnifeCoating,”MasterofSciencedisser-tation,UniversityofMinnesota,Minneapolis,MN.

͓6͔Yoneda,H.,andScriven,L.E.,1994,“Air-KnifeCoating:Analysisofthe

BasicMechanism,”Proceedings7thSymposiumonCoatingProcessScienceandTechnologyattheAICHeSpringNationalMeeting,Atlanta,GA,April17–21.

͓7͔Buchlin,J.-M.,1997,“ModelingofGas-JetWiping,”ThinLiquidFilmsand

CoatingProcesses,VKILectureSeries,vonKarmanInstituteforFluidDy-namics,Brussels,Belgium.

͓8͔Lacanette,D.,Gosset,A.,Vincent,S.,Buchlin,J.-M.,Arquis,E.,andGardin,

P.,2006,“MacroscopicAnalysisofGas-JetWiping:NumericalSimulationandExperimentalApproach,”Phys.Fluids,18,042103.

͓9͔Beltaos,S.,andRajaratnam,N.,1976,“PlaneTurbulentImpingingJets,”J.

Hydraul.Res.,11,pp.29–59.

͓10͔Tu,C.V.,andWood,D.H.,1996,“MeasurementsBeneathanImpinging

PlaneJet,”Exp.Therm.FluidSci.,13,pp.3–373.

͓11͔Beltaos,S.,1976,“ObliqueImpingementofPlaneTurbulentJets,”J.Hydr.

Div.,102,pp.1177–1192.

͓12͔Gosset,A.,Rambaud,P.,Castellano,L.,Buchlin,J.-M.,andDubois,M.,2005,

“ModelingofGasJetWipingatSmallStandoffDistances,”Proc.ofEuropeanCoatingSymposium,UniversityofBradford,UK,Sept.6–9.

͓13͔Babu,P.C.,andMahesh,K.,2004,“UpstreamEntrainmentinNumerical

SimulationsofSpatiallyEvolvingRoundJets,”Phys.Fluids,16͑10͒,pp.3699–3705.

͓14͔Paras,S.V.,Vlachos,N.A.,andKarabelas,A.J.,1994,“LiquidLayerChar-acteristicsinStratified-AtomizationFlow,”Int.J.MultiphaseFlow,20,pp.939–956.

͓15͔Trabold,T.A.,andObot,N.T.,1997,“TheOnsetofSplashingfromFree

LiquidSurfacesExposedtoImpingingGasJets,”Proc.ASMEFluidsEng.Div.SummerMeeting,Vancouver,Canada,June22–28,paper3561.

͓16͔Tu,C.V.,andEllen,C.H.,1986,“StabilityofLiquidCoatingintheJet

StrippingProcess,”Proceedings9thAustralasianFluidMechanicsConfer-ence,Auckland,NewZealand,Dec.8–12,pp.316–319.

͓17͔Yoneda,H.,andScriven,L.E.,1994,“AnalysisofSprayGenerationinAir-KnifeCoating,”Proceedings7thSymposiumonCoatingProcessScienceandTechnologyattheAICHeSpringNationalMeeting,Atlanta,GA,April17–21.͓18͔Hinze,J.O.,1955,“FundamentalsoftheHydrodynamicsMechanismofSplit-tinginDispersionProcesses,”AIChEJ.,1,pp.2–295.

Subscripts/Superscripts

gϭgasjϭjet

JournalofFluidsEngineeringAPRIL2007,Vol.129/475

Downloaded 15 May 2011 to 115.156.248.133. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- gamedaodao.com 版权所有 湘ICP备2022005869号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务